Evolutionary Programming | SpringerLink
Skip to main content

Evolutionary Programming

  • Reference work entry
Handbook of Natural Computing

Abstract

Evolutionary programming (EP) has a long history of development and application. This chapter provides a basic background in EP in terms of its procedure, history, extensions, and application. As one of the founding approaches in the field of evolutionary computation (EC), EP shares important similarities and differences with other EC approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 128699
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 128699
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Atmar JW (1976) Speculation on the evolution of intelligence and its possible realization in machine form. Doctoral dissertation, New Mexico State University, Las Cruces

    Google Scholar 

  • Burgin GH (2008) In memoriam – reflections on Larry Fogel at Decision Science, Inc. (1965–1982). IEEE Computational Intelligence Magazine 69–72

    Google Scholar 

  • Burgin GH, Fogel LJ, Phelps JP (1975) An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat, NASA Contractor Report NASA CR-2582, Washington, DC

    Google Scholar 

  • Chen C-Y, Li T-HS, Yeh Y-C (2009) EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots. Info Sci 179:180–195

    Article  MATH  Google Scholar 

  • Contreras-Hernández EJ, Cedeño-Maldonado JR (2008) Evolutionary programming applied to branch outage simulation for contingency studies. Int J Power Energy Syst 28:48–53

    Google Scholar 

  • Cornett FN (1972) An application of evolutionary programming to pattern recognition. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Flood MM (1962) Stochastic learning theory applied to choice experiments with cats, dogs and men. Behav Sci 7:289–314

    Article  Google Scholar 

  • Fogel DB (2004) In memoriam Don Dearholt. IEEE Trans Evol Comput 8:97–98

    Article  Google Scholar 

  • Fogel DB (2006) Evolutionary computation: toward a new philosophy of machine intelligence, 3rd edn. Wiley-IEEE Press, Piscataway, NJ

    Google Scholar 

  • Fogel DB, Fogel LJ, Atmar JW (1991) Meta-evolutionary programming. In: Chen RR (ed) Proceedings of 25th Asilomar conference on signals, systems, and computers. IEEE Computer Society, Los Alamitos, CA, pp 540–545

    Google Scholar 

  • Fogel DB, Fogel LJ, Atmar JW, Fogel GB (1992) Hierarchic methods of evolutionary programming. In: Fogel DB, Atmar W (eds) Proceedings of 1st annual conference on evolutionary programming. Evolutionary Programming Society, La Jolla, CA, pp 175–182

    Google Scholar 

  • Fogel GB, Cheung M (2005) Derivation of quantitative structure-toxicity relationships for exotoxicological effects of organic chemicals: evolving neural networks and evolving rules. In: 2005 IEEE congress on evolutionary computation. IEEE, Edinburgh, pp 274–281

    Google Scholar 

  • Fogel GB, Fogel DB (1995) Continuous evolutionary programming: analysis and experiments. Cybernet Syst 26:79–90

    Article  MATH  Google Scholar 

  • Fogel LJ (1962a) Autonomous automata. Indus Res 4:14–19

    Google Scholar 

  • Fogel LJ (August, 1962b) Toward inductive inference automata. In: Proceedings of the congress, International Federation for Information Processing, Munich

    Google Scholar 

  • Fogel LJ (1963) Biotechnology: concepts and applications. Prentice-Hall, Englewood, NJ

    Google Scholar 

  • Fogel LJ (1964) On the organization of intellect. Doctoral dissertation, University of California, Los Angeles, CA

    Google Scholar 

  • Fogel LJ (1990) The future of evolutionary programming. In: Chen RR (ed) Proceedings of 24th Asilomar conference on signals, systems, and computers. Maple Press, Pacific Grove, CA, pp 1036–1038

    Google Scholar 

  • Fogel LJ (1999) Intelligence through simulated evolution: forty years of evolutionary programming. Wiley, New York

    MATH  Google Scholar 

  • Fogel LJ, Burgin GH (1969) Competitive goal-seeking through evolutionary programming. Air Force Cambridge Research Labs, Final Report, Contract AF 19(628)–5927

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1964) On the evolution of artificial intelligence. In: Proceedings of 5th National Symp. on Human Factors in Engineering, IEEE, San Diego, CA, pp 63–67

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1965a) Intelligent decision-making through a simulation of evolution. Behav Sci 11:253–272

    Article  Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1965b) Intelligent decision-making through a simulation of evolution. IEEE Trans Hum Factors Electron 6:13–23

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1965c) Artificial intelligence through a simulation of evolution. In: Maxfield M, Callahan A, Fogel LJ (eds) Biophysics and cybernetic systems: Proceedings of 2nd cybernetic science symposium. Spartan Books, Washington, DC, pp 131–155

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  • Fong KF, Chow TT, Hanby VI (2007) Development of optimal design of solar water hearing system by using evolutionary algorithm. J Solar Energy Eng 129:499–501

    Article  Google Scholar 

  • Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: Conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324

    Article  Google Scholar 

  • Greenwood GW, Fogel GB, Ciobanu M (1999) Emphasizing extinction in evolutionary programming. In: Proceedings of 1999 congress on evolutionary computation. IEEE, Washington DC, pp 666–671

    Google Scholar 

  • Guo S-M, Chang W-H, Tsai JSH, Zhuang B-L, Chen L-C (2008) JPEG 2000 wavelet filter design framework with chaos evolutionary programming. Signal Process 88:2542–2553

    Article  MATH  Google Scholar 

  • Hecht D, Fogel GB (2007) High-throughput ligand screening via preclustering and evolved neural networks. IEEE/ACM Trans Comput Biol Bioinform 4:476–484

    Article  Google Scholar 

  • Hoorfar A (2007) Evolutionary programming in electromagnetic optimization: a review. IEEE Trans Antennas Propagation 55:523–537

    Article  Google Scholar 

  • Jamnejad V, Hoorfar A (2004) Design of corrugated horn antennas by evolutionary optimization techniques. IEEE, Antennas Wireless Propagation Lett 3:276–279

    Article  Google Scholar 

  • Kissinger CR, Gehlhaar DK, Fogel DB (1999) Rapid automated molecular replacement by evolutionary search. Acta Crystallogr D Biol Crystallogr 55:484–491

    Article  Google Scholar 

  • Lamers SL, Salemi M, McGrath MS, Fogel GB (2008) Prediction of R5, X4, and R5X4 HIV-1 coreceptor usage with evolved neural networks. IEEE/ACM Trans Comput Biol Bioinform 5:291–299

    Article  Google Scholar 

  • Lyle MR (1972) An investigation into scoring techniques in evolutionary programming. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Mealy GH (1955) A method of synthesizing sequential circuits. Bell Syst Tech J 34:1054–1079

    MathSciNet  Google Scholar 

  • Martinez-Estudillo A, Martinez-Estudillo F, Hervas-Martinez C, Garcia-Pedrajas N (2006) Evolutionary product unit based neural networks for regression. Neural Netw 19:477–486

    Article  MATH  Google Scholar 

  • Montez J (1974) Evolving automata for classifying electrocardiograms. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Moore EF (1957) Gedanken-experiments on sequential machines: automata studies. Ann Math Stud 34:129–153

    Google Scholar 

  • Portilla-Figueras JA, Salcedo-Sanz S, Oropesa-García A, Bousoño-Calzón C (2008) Cell size determination in WCDMA systems using an evolutionary programming approach. Comput Oper Res 35:3758–3768

    Article  MATH  Google Scholar 

  • Porto VM (1989) Evolutionary methods for training neural networks for underwater pattern classification. 24th Ann. Asilomar conf. on signals, systems, and computers, vol 2, pp 1015–1019

    Google Scholar 

  • Porto VW (1997) Evolutionary programming. In: Handbook on evolutionary computation. IOP, Bristol. Oxford University Press, New York

    Google Scholar 

  • Porto VW, Fogel DB, Fogel LJ (1995) Alternative neural network training methods. IEEE Expert 10(3):16–22

    Article  Google Scholar 

  • Porto VW, Fogel DB, Fogel LJ, Fogel GB, Johnson N, Cheung M (2005) Classifying sonar returns for the presence of mines: evolving neural networks and evolving rules. In: Fogel DB Piuri V (eds) 2005 IEEE symposium on computational intelligence for homeland security and personal safety, IEEE Press, Piscataway, NJ, pp 123–130

    Google Scholar 

  • Root R (1970) An investigation of evolutionary programming. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Sahoo PK (2008) Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming. Appl Thermal Eng 28:1580–1588

    Article  Google Scholar 

  • Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol Comput 7:83–94

    Article  Google Scholar 

  • Trellue RE (1973) The recognition of handprinted characters through evolutionary programming. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Vincent RW (1976) Evolving automata used for recognition of digitized strings. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Walsh MJ, Burgin GH, Fogel LJ (1970) Prediction and control through the use of automata and their evolution. U.S. Navy Final Report Contract N00014-66-C–0284

    Google Scholar 

  • Wang L, Zheng D-Z (2003) A modified evolutionary programming for flow shop scheduling. Int J Adv Manuf Technol 22:522–527

    Article  Google Scholar 

  • Williams GL (1977) Recognition of hand-printed numerals using evolving automata. Master’s thesis, New Mexico State University, Las Cruces

    Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Article  Google Scholar 

  • Xu J, Yang Y, Soh CK (2004) Electromechanical impedance-based structural health monitoring with evolutionary programming. J Aerospace Eng 17:182–193

    Article  Google Scholar 

  • Yao X (1991) Evolution of connectionist networks. In: Proceedings of the international symposium on AI, reasoning and creativity. Griffith University, Queensland, Australia, pp 49–52

    Google Scholar 

  • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87:1423–1447

    Article  Google Scholar 

  • Yao X, Islam M (February, 2008) Evolving artificial neural network ensembles. IEEE Comput Mag 3(1):31–42

    Article  Google Scholar 

  • Yao X, Liu Y (1996) Fast evolutionary programming. In: Fogel LJ, Angeline PJ, Bäck T (eds) Evolutionary programming V: Proceedings of 5th annual conference on evolutionary programming. MIT Press, Cambridge, MA, pp 451–460

    Google Scholar 

  • Yao X, Liu Y (1997a) EPNet for chaotic time-series prediction. In: Yao X, Kim J-H Furuhashi T (eds) Simulated evolution and learning. Springer, Berlin, pp 146–156

    Chapter  Google Scholar 

  • Yao X, Liu Y (1997b) A new evolutionary system for evolving artificial neural networks. IEEE Trans Neural Netw 8:694–713

    Article  Google Scholar 

  • Yao X, Liu Y (1999) Evolutionary programming made faster. IEEE Trans on Evol Prog 3:82–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fogel, G.B. (2012). Evolutionary Programming. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_23

Download citation

Publish with us

Policies and ethics