High Performance Computing for Eigenvalue Solver in Density-Matrix Renormalization Group Method: Parallelization of the Hamiltonian Matrix-Vector Multiplication | SpringerLink
Skip to main content

High Performance Computing for Eigenvalue Solver in Density-Matrix Renormalization Group Method: Parallelization of the Hamiltonian Matrix-Vector Multiplication

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2008 (VECPAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5336))

Abstract

The Density Matrix Renormalization Group (DMRG) method is widely used by computational physicists as a high accuracy tool to obtain the ground state of large quantum lattice models. Since the DMRG method has been originally developed for 1-D models, many extended method to a 2-D model have been proposed. However, some of them have issues in term of their accuracy. It is expected that the accuracy of the DMRG method extended directly to 2-D models is excellent. The direct extension DMRG method demands an enormous memory space. Therefore, we parallelize the matrix-vector multiplication in iterative methods for solving the eigenvalue problem, which is the most time- and memory-consuming operation. We find that the parallel efficiency of the direct extension DMRG method shows a good one as the number of states kept increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, T., Nachtergaele, B.: The Heisenberg Model - a Bibliography (1996), http://math.arizona.edu/~tgk/qs.html

  2. Rasetti, M. (ed.): The Hubbard Model: Recent Results. World Scientific, Singapore (1991)

    Google Scholar 

  3. Montorsi, A. (ed.): The Hubbard Model. World Scientific, Singapore (1992)

    Google Scholar 

  4. Machida, M., Yamada, S., Ohashi, Y., Matsumoto, H.: Novel superfluidity in a trapped gas of Fermi atoms with repulsive interaction loaded on an optical lattice. Phys. Rev. Lett. 93, 200402 (2004)

    Article  Google Scholar 

  5. Machida, M., Yamada, S., Ohashi, Y., Matsumoto, H., Machida, et al.: Reply. Phys. Rev. Lett. 95, 218902 (2005)

    Article  Google Scholar 

  6. Yamada, S., Imamura, T., Machida, M.: 16.447 TFlops and 159-Billion-dimensional Exact-diagonalization for Trapped Fermion-Hubbard Model on the Earth Simulator. In: Proc. of SC 2005 (2005), http://sc05.supercomputing.org/schedule/pdf/pap188.pdf

  7. Yamada, S., Imamura, T., Kano, T., Machida, M.: High-Performance Computing for Exact Numerical Approaches to Quantum Many-Body Problems on the Earth Simulator. In: Proc. of SC 2006 (2006), http://sc06.supercomputing.org/schedule/pdf/gb113.pdf

  8. White, S.R.: Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  Google Scholar 

  9. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10355 (1993)

    Article  Google Scholar 

  10. Hager, G., Wellein, G., Jackemann, E., Fehske, H.: Stripe formation in dropped Hubbard ladders. Phys. Rev. B 71, 75108 (2005)

    Article  Google Scholar 

  11. Noack, R.M., Manmana, S.R.: Diagonalization and Numerical Renormalization- Group-Based Methods for Interacting Quantum Systems. In: Proc. of AIP Conf., vol. 789, pp. 91–163 (2005)

    Google Scholar 

  12. Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Theory, vol. 1. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  13. Knyazev, A.V.: Preconditioned eigensolvers - An oxymoron? Electronic Transactions on Numerical analysis 7, 104–123 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Knyazev, A.V.: Toward the optimal eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamada, S., Okumura, M., Machida, M. (2008). High Performance Computing for Eigenvalue Solver in Density-Matrix Renormalization Group Method: Parallelization of the Hamiltonian Matrix-Vector Multiplication. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2008. VECPAR 2008. Lecture Notes in Computer Science, vol 5336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92859-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92859-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92858-4

  • Online ISBN: 978-3-540-92859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics