Abstract
Efficient exploration of unknown or unmapped environments has become one of the fundamental problem domains in algorithm design. Its applications range from robot navigation in hazardous environments to rigorous searching, indexing and analysing digital data available on the Internet. A large number of exploration algorithms has been proposed under various assumptions about the capability of mobile (exploring) entities and various characteristics of the environment which are to be explored. This paper considers the graph model, where the environment is represented by a graph of connections in which discrete moves are permitted only along its edges. Designing efficient exploration algorithms in this model has been extensively studied under a diverse set of assumptions, e.g., directed vs undirected graphs, anonymous nodes vs nodes with distinct identities, deterministic vs probabilistic solutions, single vs multiple agent exploration, as well as in the context of different complexity measures including the time complexity, the memory consumption, and the use of other computational resources such as tokens and messages. In this work the emphasis is on memory efficient exploration of anonymous graphs. We discuss in more detail three approaches: random walk, Propp machine and basic walk, reviewing major relevant results, presenting recent developments, and commenting on directions for further research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on Computing 29, 1164–1188 (2000)
Aldous, D.J.: On the time taken by random walks on finite groups to visit every state. Journal Probability Theory and Related Fields 62(3), 361–374 (1983)
Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: FOCS 1979, pp. 218–223 (1979)
Alon, N., Azar, Y., Ravid, Y.: Universal sequences for complete graphs. Discrete Appl. Math. 27(1-2), 25–28 (1990)
Alon, N., Avin, C., Koucky, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. In: SPAA 2008: Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures, pp. 119–128. ACM, New York (2008)
Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Information and Computation 152(2), 155–172 (1999)
Bar-Noy, A., Borodin, A., Karchmer, M., Linial, N., Werman, M.: Bounds on universal sequences. SIAM J. Comput. 18, 268–277 (1989)
Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. Information and Computation 176(1), 1–21 (2002)
Bender, M., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. of FOCS 1994, pp. 75–85 (1994)
Bhatt, S., Even, S., Greenberg, D., Tayar, R.: Traversing Directed Eulerian Mazes. Journal of Graph Algorithms and Applications 6(2), 157–173 (2002)
Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM Journal on Computing 26, 110–137 (1997)
Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: Proc. of FOCS 1978, pp. 132–142 (1978)
Bridgland, M.F.: Universal traversal sequences for paths and cycles. J. Algorithms 8(5), 395–404 (1987)
Broder, A.Z., Karlin, A.R., Raghavan, P., Upfal, E.: Trading space for time in undirected s-t connectivity. SIAM J. Comput. 23(2), 324–334 (1994)
Budach, L.: Automata and labyrinths. Math. Nachrichten, 195–282 (1978)
Buss, J.F., Tompa, M.: Lower bounds on universal traversal sequences based on chains of length five. Inf. Comput. 120(2), 326–329 (1995)
Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resistance of a graph captures its commute and cover times. In: Proc. STOC 1989: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 574–586. ACM Press, New York (1989)
Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. In: Proc. of the 32nd International Colloquium on Automata, Languages and Programming (ICALP), pp. 335–346 (2005)
Cook, S.A., Rackoff, C.: Space lower bounds for maze threadability on restricted machines. SIAM Journal on Computing 9(3), 636–652 (1980)
Cooper, C., Frieze, A.: The cover time of random regular graphs. SIAM J. Discret. Math. 18(4), 728–740 (2005)
Cooper, C., Frieze, A.M.: Crawling on web graphs. In: Proc. STOC 2002, pp. 419–427 (2002)
Cooper, C., Frieze, A.M., Radzik, T.: Multiple random walks in random regular graphs (unpublished manuscript, 2008)
Cooper, C., Klasing, R., Radzik, T.: A randomized algorithm for the joining protocol in dynamic distributed networks. Technical Report RR-1432-07, LaBRI, Bordeaux, France (June 2007)
Cooper, J.N., Spencer, J.: Simulating a random walk with constant error. Combinatorics, Probability and Computing 15, 815–822 (2006)
Cooper, J., Doerr, B., Friedrich, T., Spencer, J.H.: Deterministic random walks on regular trees. In: Proc. of SODA 2008, pp. 766–772 (2008)
Cooper, J., Doerr, B., Spencer, J.H., Tardos, G.: Deterministic random walks on the integers. European Journal of Combinatorics 28(8), 2072–2090 (2007)
Czyzowicz, J., Dobrev, S., Gąsieniec, L., Ilcinkas, D., Jansson, J., Klasing, R., Lignos, I., Martin, R., Sadakane, K., Sung, W.-K.: More efficient periodic traversal in anonymous undirected graphs (unpublished manuscript, 2008)
Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment: The rectilinear case. Journal of the ACM 45, 215–245 (1998)
Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph Theory 32(3), 265–297 (1999)
Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326(1-3), 343–362 (2004)
Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)
Dobrev, S., Jansson, J., Sadakane, K., Sung, W.-K.: Finding Short Right-Hand-on-the-Wall Walks in Graphs. In: Pelc, A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 127–139. Springer, Heidelberg (2005)
Doerr, B., Friedrich, T.: Deterministic Random Walks on the Two-Dimensional Grid. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 474–483. Springer, Heidelberg (2006)
Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Transaction on Algorithms 2(3), 380–402 (2006)
Feige, U.: A tight upper bound on the cover time for random walks on graphs. Random Structures and Algorithms 6(1), 51–54 (1995)
Feige, U.: A tight lower bound on the cover time for random walks on graphs. Random Struct. Algorithms 6(4), 433–438 (1995)
Feige, U.: Collecting coupons on trees, and the cover time of random walks. Computational Complexity 6(4), 341–356 (1996)
Flocchini, P., Mans, B., Santoro, N.: On the impact of sense of direction on message complexity. Information Processing Letters 63(1), 23–31 (1997)
Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definition, properties and classes. Networks 32(3), 165–180 (1998)
Fraigniaud, P., Gavoille, C., Mans, B.: Interval routing schemes allow broadcasting with linear message-complexity. Distributed Computing 14(4), 217–229 (2001)
Fraigniaud, P., Ilcinkas, D.: Digraph exploration with little memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)
Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)
Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar hamiltonian circuit problem is np-complete. SIAM J. Comput. 5(4), 704–714 (1976)
Gąsieniec, L., Klasing, R., Martin, R., Navarra, A., Zhang, X.: Fast Periodic Graph Exploration with Constant Memory. J. Comput. Syst. Sci. 74(5), 808–822 (2007)
Gąsieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: SODA, pp. 585–594 (2007)
Hoory, S., Wigderson, A.: Universal traversal sequences for expander graphs. Inf. Process. Lett. 46(2), 67–69 (1993)
Ikeda, S., Kubo, I., Okumoto, N., Yamashita, M.: Impact of local topological information on random walks on finite graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1054–1067. Springer, Heidelberg (2003)
Ilcinkas, D.: Setting Port Numbers for Fast Graph Exploration. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 59–69. Springer, Heidelberg (2006)
Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algorithms. In: Proc. STOC 1994: Proceedings of the twenty-sixth annual ACM symposium on Theory of computing, pp. 356–364. ACM Press, New York (1994)
Istrail, S.: Polynomial universal traversing sequences for cycles are constructible. In: Proc. STOC 1988: Proceedings of the twentieth annual ACM symposium on Theory of computing, pp. 491–503. ACM Press, New York (1988)
Karloff, H.J., Paturi, R., Simon, J.: Universal traversal sequences of length n O(logn) for cliques. Inf. Process. Lett. 28(5), 241–243 (1988)
Koucký, M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65(4), 717–726 (2002)
Koucký, M.: Log-space constructible universal traversal sequences for cycles of length o(n4.03). Theor. Comput. Sci. 296(1), 117–144 (2003)
Kozen, D.: Automata and planar graphs. In: Proc. of Fundations Computatial Theory (FCT 1979), pp. 243–254 (1979)
Law, C., Siu, K.-Y.: Distributed construction of random expander graphs. In: Proc. 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (April 2003)
Panaite, P., Pelc, A.: Impact of topographic information on graph exploration efficiency. Networks 36, 96–103 (2000)
Priezzhev, V.B., Dhar, D., Dhar, A., Krishnamurthy, S.: Eulerian walkers as a model of selforganized criticality. Physics Review Letters 77, 5079–5082 (1996)
Rabin, M.O.: Maze threading automata. Technical Report Seminar Talk, University of California at Berkeley (October 1967)
Rao, N., Kareti, S., Shi, W., Iyengar, S.: Robot navigation in unknown terrains: Introductory survey of length, non-heuristic algorithms. Technical Report ORNL/TM12410, Oak Ridge National Lab (1993)
Reingold, O.: Undirected st-connectivity in log-space. In: Proc. STOC 2005, pp. 376–385 (2005)
Rollik, H.A.: Automaten in planaren graphen. Acta Informatica 13, 287–298 (1980)
Rubinfeld, R.: The cover time of a regular expander is O(n log n). Information Processing Letters 35, 49–51 (1990)
Winkler, P., Zuckerman, D.: Multiple cover time. Random Structures and Algorithms 9, 403–411 (1996)
Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A Distributed Ant Algorithm for Efficiently Patrolling a Network. Algorithmica 37, 165–186 (2003)
Zuckerman, D.: A technique for lower bounding the cover time. SIAM J. Discret. Math. 5(1), 81–87 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gąsieniec, L., Radzik, T. (2008). Memory Efficient Anonymous Graph Exploration. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds) Graph-Theoretic Concepts in Computer Science. WG 2008. Lecture Notes in Computer Science, vol 5344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92248-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-92248-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92247-6
Online ISBN: 978-3-540-92248-3
eBook Packages: Computer ScienceComputer Science (R0)