Easily Reconfigurable Analytical Fuzzy Predictive Controllers: Actuator Faults Handling | SpringerLink
Skip to main content

Easily Reconfigurable Analytical Fuzzy Predictive Controllers: Actuator Faults Handling

  • Conference paper
Advances in Computation and Intelligence (ISICA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5370))

Included in the following conference series:

Abstract

Efficient and easily reconfigurable predictive controllers are described in the paper. They are based on Takagi–Sugeno (TS) fuzzy models with local models in the form of the step responses. In these algorithms the TS fuzzy model is utilized in such a way that the control law can be calculated at each iteration in a simple and easy way. They are computationally efficient and can be easily reconfigured during adaptation to new situations, like e.g. actuator faults that can occur in the control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blevins, T.L., McMillan, G.K., Wojsznis, W.K., Brown, M.W.: Advanced Control Unleashed. ISA (2003)

    Google Scholar 

  2. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  3. Cutler, C.R., Ramaker, B.L.: Dynamic Matrix Control – a computer control algorithm. In: Proc. Joint Automatic Control Conference, San Francisco, CA, USA (1979)

    Google Scholar 

  4. Maciejowski, J.M.: Predictive control with constraints. Prentice Hall, Harlow (2002)

    MATH  Google Scholar 

  5. Ławryńczuk, M., Marusak, P., Tatjewski, P.: Set–point optimisation and predictive constrained control for fast feedback controlled processes. In: Proc. 13th IEEE/IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2007, Szczecin, Poland, pp. 357–362 (2007)

    Google Scholar 

  6. Marusak, P.: Efficient fuzzy predictive economic set–point optimizer. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS, vol. 5097, pp. 273–284. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Marusak, P.: Actuator fault toleration in control systems with analytical predictive controllers and output constraints. In: Proc. 13th IEEE/IFAC International Conference MMAR 2007, Szczecin, Poland, pp. 825–832 (2007)

    Google Scholar 

  8. Marusak, P., Tatjewski, P.: Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. Archives of Control Sciences 12(3), 267–288 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Newell, R.B., Lee, P.L.: Applied process control – a case study. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  10. Piegat, A.: Fuzzy Modeling and Control. Physica–Verlag, Berlin (2001)

    Book  MATH  Google Scholar 

  11. Rossiter, J.A.: Model–Based Predictive Control. CRC Press, Boca Raton (2003)

    Google Scholar 

  12. Sala, A., Guerra, T.M., Babuska, R.: Perspectives of fuzzy systems and control. Fuzzy Sets and Systems 156, 432–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. on Systems, Man and Cybernetics 15, 116–132 (1985)

    Article  MATH  Google Scholar 

  14. Tatjewski, P.: Advanced Control of Industrial Processes; Structures and Algorithms. Springer, London (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marusak, P.M. (2008). Easily Reconfigurable Analytical Fuzzy Predictive Controllers: Actuator Faults Handling. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2008. Lecture Notes in Computer Science, vol 5370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92137-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92137-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92136-3

  • Online ISBN: 978-3-540-92137-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics