Bayesian Reward Filtering | SpringerLink
Skip to main content

Bayesian Reward Filtering

  • Conference paper
Recent Advances in Reinforcement Learning (EWRL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5323))

Included in the following conference series:

  • 1140 Accesses

Abstract

A wide variety of function approximation schemes have been applied to reinforcement learning. However, Bayesian filtering approaches, which have been shown efficient in other fields such as neural network training, have been little studied. We propose a general Bayesian filtering framework for reinforcement learning, as well as a specific implementation based on sigma point Kalman filtering and kernel machines. This allows us to derive an efficient off-policy model-free approximate temporal differences algorithm which will be demonstrated on two simple benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning), 3rd edn. The MIT Press, Cambridge (1998)

    Google Scholar 

  2. Chen, Z.: Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond. Technical report, Adaptive Systems Lab, McMaster University (2003)

    Google Scholar 

  3. Bellman, R.: Dynamic Programming, 6th edn. Dover Publications (1957)

    Google Scholar 

  4. Engel, Y.: Algorithms and Representations for Reinforcement Learning. Ph.D thesis, Hebrew University (April 2005)

    Google Scholar 

  5. van der Merwe, R.: Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. Ph.D thesis, OGI School of Science & Engineering, Oregon Health & Science University, Portland, OR, USA (April 2004)

    Google Scholar 

  6. Szita, I., Lőrincz, A.: Kalman Filter Control Embedded into the Reinforcement Learning Framework. Neural Comput. 16(3), 491–499 (2004)

    Article  MATH  Google Scholar 

  7. Phua, C.W., Fitch, R.: Tracking Value Function Dynamics to Improve Reinforcement Learning with Piecewise Linear Function Approximation. In: ICML 2007 (2007)

    Google Scholar 

  8. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific (1995)

    Google Scholar 

  9. Vapnik, V.N.: Statisical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)

    Google Scholar 

  10. Carreira-Perpinan, M.A.: Mode-Finding for Mixtures of Gaussian Distributions. IEEE Transactions on Pattern Analalysis and Machine Intelligence 22(11), 1318–1323 (2000)

    Article  Google Scholar 

  11. Schneegass, D., Udluft, S., Martinetz, T.: Kernel Rewards Regression: an Information Efficient Batch Policy Iteration Approach. In: AIA 2006: Proceedings of the 24th IASTED international conference on Artificial intelligence and applications, Anaheim, CA, USA, pp. 428–433. ACTA Press (2006)

    Google Scholar 

  12. Dearden, R., Friedman, N., Russell, S.J.: Bayesian Q-learning. In: Fifteenth National Conference on Artificial Intelligence, pp. 761–768 (1998)

    Google Scholar 

  13. Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC Model-Free Reinforcement Learning. In: 23rd International Conference on Machine Learning (ICML 2006), Pittsburgh, PA, USA, pp. 881–888 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geist, M., Pietquin, O., Fricout, G. (2008). Bayesian Reward Filtering. In: Girgin, S., Loth, M., Munos, R., Preux, P., Ryabko, D. (eds) Recent Advances in Reinforcement Learning. EWRL 2008. Lecture Notes in Computer Science(), vol 5323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89722-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89722-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89721-7

  • Online ISBN: 978-3-540-89722-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics