A Variational Level Set Method for Multiple Object Detection | SpringerLink
Skip to main content

A Variational Level Set Method for Multiple Object Detection

  • Conference paper
Advances in Visual Computing (ISVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5359))

Included in the following conference series:

  • 1568 Accesses

Abstract

A novel variational level set method for multiple object detection is presented, which uses n-1 level set functions for n-1 objects and the background without overlapping and vacuum problems. The energy functional includes three parts. The first part is a parametric region-based model via generic image noise distributions, the second part is the classic edge-based model, the third part is a term used to enforce the constraints of level set functions as signed distance functions. Characteristic functions for region partitioning are written in a unified form using Heaviside functions of level set functions. Some intermediate terms in evolution equations are extracted in a unified form for simplification of expressions and computation efficiency. The corresponding semi-implicit schemes are derived and used to some examples for segmentation of synthetic and real images to validate the method suggested in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, H.K., Chan, T.F., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Osher, S., Paragios, N.: Geometric level set methods in imaging, vision, and graphics. Springer, New York (2003)

    MATH  Google Scholar 

  3. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and assosiated variational problems. Comm. Pure. Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  6. Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. International Journal of Computer Vision 40(3), 187–197 (2000)

    Article  MATH  Google Scholar 

  7. Lie, J., Lysaker, M., Tai, X.-C.: A variant of the level set method and applications to image segmentation. UCLA, CAM-03-50 (2003)

    Google Scholar 

  8. Chung, G., Vese, L.A.: Energy minimization based segmentation and denoising using a multilayer level set approach. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 439–455. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Vese, L.A.: Multiphase object detection and image segmentation. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 175–194. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. IEEE Intl. Conf. on Comp. Vis., pp. 694–699 (1995)

    Google Scholar 

  11. Paragios, N.K.: Geodesic active regions: and level set methods: Contributions and applications in artificial vision. PhD Thesis, School of Computer Engineering, University of Nice Sophia Antipolis (January 2000)

    Google Scholar 

  12. Mansouri, A.R., Mitiche, A., Vazquez, C.: Multiregion competition: A level set extension of region competition to multiple region image partitioning. Computer Vision and Image Understanding 101, 137–150 (2006)

    Article  Google Scholar 

  13. Ayed, B., Hennane, N., Mitiche, A.: Unsupervised variational image segmentation/classification using a weibull observation model. IEEE Transactions on Image Processing 15(11), 3431–3439 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, Z., Li, H., Wei, W., Xu, S. (2008). A Variational Level Set Method for Multiple Object Detection. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5359. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89646-3_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89646-3_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89645-6

  • Online ISBN: 978-3-540-89646-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics