Abstract
We describe a probabilistic reference disambiguation mechanism developed for a spoken dialogue system mounted on an autonomous robotic agent. Our mechanism performs probabilistic comparisons between features specified in referring expressions (e.g. size and colour) and features of objects in the domain. The results of these comparisons are combined using a function weighted on the basis of the specified features. Our evaluation shows high reference resolution accuracy across a range of spoken referring expressions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)
Zukerman, I., Makalic, E., Niemann, M., George, S.: A probabilistic approach to the interpretation of spoken utterances. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 581–592. Springer, Heidelberg (2008)
Makihara, Y., Takizawa, M., Shirai, I., Miura, J., Shimada, N.: Object recognition supported by user interaction for service robots. In: Proceedings of the 16th International Conference on Pattern Recognition, Quebec, Canada, vol. 3, pp. 561–564 (2002)
Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the generation of referring expressions. Cognitive Science 18(2), 233–263 (1995)
Wyatt, J.: Planning clarification questions to resolve ambiguous references to objects. In: Proceedings of the 4th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Edinburgh, Scotland, pp. 16–23 (2005)
Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 265–285. MIT Press, Cambridge (1998)
Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet: Similarity – measuring the relatedness of concepts. In: AAAI 2004 – Proceedings of the 19th National Conference on Artificial Intelligence, San Jose, California, pp. 25–29 (2004)
Puzicha, J., Buhmann, J., Rubner, Y., Tomasi, C.: Empirical evaluation of dissimilarity measures for color and texture. In: Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, vol. 2, pp. 1165–1172 (1999)
Kelleher, J.: Attention driven reference resolution in multimodal contexts. Artificial Intelligence Review 25, 21–35 (2006)
Potamianos, G., Neti, C.: Stream confidence estimation for audio-visual speech recognition. In: ICSLP 2000 Proceedings, Beijing, China, vol. 3, pp. 746–749 (2000)
Carletta, J.: Assessing agreement on classification tasks: The Kappa statistic. Computational Linguistics 22(2), 249–254 (1996)
Ang, J., Dhillon, R., Krupski, A., Shriberg, E., Stolcke, A.: Prosody-based automatic detection of annoyance and frustration in human-computer dialog. In: ICSLP 2002 Proceedings, Denver, Colorado, pp. 2037–2040 (2002)
Siddharthan, A., Copestake, A.: Generating referring expressions in open domains. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Spain, pp. 407–414 (2004)
Pfleger, N., Alexandersson, J., Becker, T.: A robust and generic discourse model for multimodal dialogue. In: Proceedings of the 3rd IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Acapulco, Mexico (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zukerman, I., Makalic, E., Niemann, M. (2008). Using Probabilistic Feature Matching to Understand Spoken Descriptions. In: Wobcke, W., Zhang, M. (eds) AI 2008: Advances in Artificial Intelligence. AI 2008. Lecture Notes in Computer Science(), vol 5360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89378-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-89378-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89377-6
Online ISBN: 978-3-540-89378-3
eBook Packages: Computer ScienceComputer Science (R0)