On Using Divide and Conquer in Modeling Natural Systems | SpringerLink
Skip to main content

On Using Divide and Conquer in Modeling Natural Systems

  • Chapter
  • First Online:
Algorithmic Bioprocesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

In recent years, we have been studying approaches to the realistic modeling of natural systems, especially biological systems. We have tested several of these in a project devoted to modeling pancreatic organogenesis, a complex system that dynamically promotes structural and molecular development. Here, we describe one of these approaches—a kind of ‘divide and conquer’ technique, in which the system is disassembled into modules to specify behaviors on the scale of the organ (i.e., morphogenesis) and the cell (i.e., molecular interactions). At run-time, these modules are re-assembled to direct development in individual cells. This approach employs multi-scaling and dynamics, two important characteristics of natural systems, but avoids cross-scaling. It thus appears to be useful for systems in which the importance of cross-scaling seems to be less significant, such as the development of phyllotaxis in plants. In pancreatic organogenesis, cross-scaling was found to be a significant characteristic, and thus by using ‘divide and conquer’ we could cover only its preliminary stages. We discuss the approach and our use of it, as well as he various methods to analyze the achievements and limitations of the end result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 3D Game Studio. www.3dgamestudio.com

  2. Axelrod JD (2006) Cell shape in proliferating epithelia: a multifaceted problem. Cell 126:643–645

    Article  Google Scholar 

  3. Cardelli L (2005) Abstract machines of systems biology. Trans Comput Syst Biol 3:145–168

    Google Scholar 

  4. Chakrabarti SK, Mirmira RG (2003) Transcription factors direct the development and function of pancreatic beta cells. Trends Endocrinol Metab 14:78–84

    Article  Google Scholar 

  5. Chu K, Nemoz-Gaillard E, Tsai MJ (2001) BETA2 and pancreatic islet development. Recent Prog Horm Res 56:23–46

    Article  Google Scholar 

  6. Ciliberto A, Novak B, Tyson JJ (2003) Mathematical model of the morphogenesis checkpoint in budding yeast. J Cell Biol 163:1243–1254

    Article  Google Scholar 

  7. Cohen IR, Harel D (2007) Explaining a complex living system: dynamics, multi-scaling and emergence. J R Soc Interface 4:175–182

    Article  Google Scholar 

  8. Edelstein-Keshet L (2005) Mathematical models in biology. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  9. Edlund H (2002) Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 3:524–532

    Article  Google Scholar 

  10. Efroni S, Harel D, Cohen IR (2005) Reactive animation: realistic modeling of complex dynamic systems. IEEE Comput 38:38–47

    Google Scholar 

  11. Finkelstein A, Hetherington J, Li L, Margoninski O, Saffrey P, Seymour R, Warner A (2004) Computational challenges of systems biology. IEEE Comput 37(5):26–33

    Google Scholar 

  12. Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25:1239–1249

    Article  Google Scholar 

  13. Ghosh R, Tomlin C (2004) Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: delta–notch protein signalling. Syst Biol (Stevenage) 1:170–183

    Article  Google Scholar 

  14. Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of geometric order in proliferating metazoan epithelia. Nature 442:1038–1041

    Article  Google Scholar 

  15. Gorgevik D, Loskovska S, Mihajlov D (1994) Lindenmayer system application on the human kidney arterial system. In: Proceedings of the 12th international congress of the European federation for medical informatics, pp 127–131

    Google Scholar 

  16. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8:231–274

    Article  MATH  MathSciNet  Google Scholar 

  17. Harel D, Gery E (1997) Executable object modeling with statecharts. IEEE Comput 30:31–42

    Google Scholar 

  18. Harel D, Setty Y (2007) Generic reactive animation: realistic modeling of natural complex systems (submitted)

    Google Scholar 

  19. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O (2006) Probabilistic model checking of complex biological pathways. In: Priami C (ed) Proceedings of the computational methods in systems biology (CMSB’06). Lecture notes in bioinformatics, vol 4210. Springer, Berlin, pp 32–47

    Chapter  Google Scholar 

  20. Jensen J (2004) Gene regulatory factors in pancreatic development. Dev Dyn 229:176–200

    Article  Google Scholar 

  21. Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12:540–547

    Article  Google Scholar 

  22. Lindenmayer A (1968) Mathematical models for cellular interaction in development. J Theor Biol 18:280–315

    Article  Google Scholar 

  23. The MathWorks. www.mathworks.com

  24. Mundermann L, Erasmus Y, Lane B, Coen E, Prusinkiewicz P (2005) Quantitative modeling of arabidopsis development. Plant Physiol 139:960–968

    Article  Google Scholar 

  25. Mundermann L, MacMurchy P, Pivovarov J, Prusinkiewicz P (2003) Modeling lobed leaves. In: Proceedings of computer graphics international

    Google Scholar 

  26. Murtaugh LC, Melton DA (2003) Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol 19:71–89

    Article  Google Scholar 

  27. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300

    Article  Google Scholar 

  28. Noble D (2005) The heart is already working. Biochem Soc Trans 33:539–542

    Article  Google Scholar 

  29. Pictet RL, Clark WR, Williams RH, Rutter WJ (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol 29:436–467

    Article  Google Scholar 

  30. Priami C, Quaglia P (2004) Modelling the dynamics of biosystems. Brief Bioinform 5:259–269

    Article  Google Scholar 

  31. Prusinkiewicz P (2004) Modeling plant growth and development. Curr Opin Plant Biol 7:79–83

    Article  Google Scholar 

  32. Prusinkiewicz P, Hanan J (1989) Lindenmayer systems, fractals and plants. Springer, New York

    MATH  Google Scholar 

  33. Prusinkiewicz P, Rolland-Lagan AG (2006) Modeling plant morphogenesis. Curr Opin Plant Biol 9:83–88

    Article  Google Scholar 

  34. Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419:343

    Article  Google Scholar 

  35. Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific symposium on biocomputing, pp 459–470

    Google Scholar 

  36. Roux-Rouquié M, daRosa DS (2006) Ten top reasons for systems biology to get into model-driven engineering. In: GaMMa’06: proceedings of the 2006 international workshop on global integrated model management. New York, ACM, pp 55–58

    Chapter  Google Scholar 

  37. Schonhoff SE, Giel-Moloney M, Leiter AB (2004) Minireview: development and differentiation of gut endocrine cells. Endocrinology 145:2639–2644

    Article  Google Scholar 

  38. Segel LA (1984) Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, New York

    MATH  Google Scholar 

  39. Segel LA (1991) Biological kinetics. Cambridge University Press, New York

    MATH  Google Scholar 

  40. Setty Y, Cohen IR, Dor Y, Harel D (2008) Four-dimensional realistic modeling of pancreatic organogenesis. Proc Natl Acad Sci USA 105(51):20374–20379

    Article  Google Scholar 

  41. Slack JM (1995) Developmental biology of the pancreas. Development 121:1569–1580

    Google Scholar 

  42. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306

    Article  Google Scholar 

  43. Taubner C, Merker T (2005) Discrete modelling of the ethylene-pathway. In: ICDEW’05: proceedings of the 21st international conference on data engineering workshops. Washington, IEEE Computer Society, p 1152

    Chapter  Google Scholar 

  44. Telelogic. www.telelogic.com

  45. Webb K, White T (2006) Cell modeling with reusable agent-based formalisms. Appl Intell 24(2):169–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaki Setty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Setty, Y., Cohen, I.R., Mayo, A.E., Harel, D. (2009). On Using Divide and Conquer in Modeling Natural Systems. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics