Some Undecidable Dynamical Properties for One-Dimensional Reversible Cellular Automata | SpringerLink
Skip to main content

Some Undecidable Dynamical Properties for One-Dimensional Reversible Cellular Automata

  • Chapter
  • First Online:
Algorithmic Bioprocesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

Using the fact that the tiling problem of Wang tiles is undecidable even if the given tile set is deterministic by two opposite corners, it is shown that the question whether there exists a trajectory which belongs to the given open and closed set is undecidable for one-dimensional reversible cellular automata. This result holds even if the cellular automaton is mixing. Furthermore, it is shown that left expansivity of a reversible cellular automaton is an undecidable property. Also, the tile set construction gives yet another proof for the universality of one-dimensional reversible cellular automata.

J. Kari’s research supported by the Academy of Finland grant 211967.

V. Lukkarila’s research supported by the Finnish Cultural Foundation and the Fund of Vilho, Yrjö and Kalle Väisälä.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amoroso S, Patt Y (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464

    MATH  MathSciNet  Google Scholar 

  2. Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 6:525–532

    Google Scholar 

  3. Berger R (1966) The undecidability of the domino problem. Mem Am Math Soc 66:1–72

    Google Scholar 

  4. Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellular automata. Israel J Math 99:149–174

    Article  MATH  MathSciNet  Google Scholar 

  5. Dubacq J-C (1995) How to simulate any Turing machine by reversible one-dimensional cellular automaton. Int J Found Comput Sci 6(4):395–402

    Article  MATH  Google Scholar 

  6. Durand B, Formenti E, Varouchas G (2003) On undecidability of equicontinuity classification for cellular automata. Discrete Math Theor Comput Sci, pp 117–128

    Google Scholar 

  7. Finelli M, Manzini G, Margara L (1998) Lyapunov exponents versus expansivity and sensitivity in cellular automata. J Complex 14:210–233

    Article  MATH  MathSciNet  Google Scholar 

  8. Hooper P (1966) The undecidability of the Turing machine immortality problem. J Symbol Log 31(2):219–234

    Article  MATH  MathSciNet  Google Scholar 

  9. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages and computation. Addison–Wesley, Readings

    MATH  Google Scholar 

  10. Kari J (1992) The nilpotency problem of one-dimensional cellular automata. SIAM J Comput 21:571–586

    Article  MATH  MathSciNet  Google Scholar 

  11. Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48:149–182

    Article  MATH  MathSciNet  Google Scholar 

  12. Kari J (2005) Theory of cellular automata: a survey. Theor Comput Sci 334:3–33

    Article  MATH  MathSciNet  Google Scholar 

  13. Kari J, Ollinger N (2008) Periodicity and immortality in reversible computing. In: MFCS 2008. Lecture notes in computer science, vol 5162. Springer, Berlin, pp 419–430

    Google Scholar 

  14. Kurka P (2001) Topological dynamics of cellular automata. In: Markus B, Rosenthal J (eds) Codes, systems and graphical models. IMA volumes in mathematics and its applications, vol 123. Springer, Berlin, pp 447–498

    Google Scholar 

  15. Lukkarila V (2008) Sensitivity and topological mixing are undecidable for reversible one-dimensional cellular automata. J Cell Autom (submitted)

    Google Scholar 

  16. Lukkarila V (2009) The 4-way deterministic tiling problem is undecidable. Theor Comput Sci 410:1516–1533

    Article  MATH  MathSciNet  Google Scholar 

  17. Manna Z (1974) Mathematical theory of computation. McGraw–Hill, New York

    MATH  Google Scholar 

  18. Morita K, Harao M (1989) Computation universality of one-dimensional reversible (injective) cellular automata. Trans IEICE Jpn E72:758–762

    Google Scholar 

  19. Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift. Mem Am Math Soc, vol 546. AMS, Providence

    Google Scholar 

  20. Robinson RM (1971) Undecidability and nonperiodicity for tilings of the plane. Invent Math 12:177–209

    Article  MathSciNet  Google Scholar 

  21. Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indag Math N S 4:203–210

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Kari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kari, J., Lukkarila, V. (2009). Some Undecidable Dynamical Properties for One-Dimensional Reversible Cellular Automata. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds) Algorithmic Bioprocesses. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88869-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88869-7_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88868-0

  • Online ISBN: 978-3-540-88869-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics