Decidable Compositions of O-Minimal Automata | SpringerLink
Skip to main content

Decidable Compositions of O-Minimal Automata

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5311))

Abstract

We identify a new class of decidable hybrid automata: namely, parallel compositions of semi-algebraic o-minimal automata. The class we consider is fundamental to hierarchical modeling in many exemplar systems, both natural and engineered. Unfortunately, parallel composition, which is an atomic operator in such constructions, does not preserve the decidability of reachability. Luckily, this paper is able to show that when one focuses on the composition of semi-algebraic o-minimal automata, it is possible to translate the decidability problem into a satisfiability problem over formulæinvolving both real and integer variables. While in the general case such formulæ would be undecidable, the particular format of the formulæ obtained in our translation allows combining decidability results stemming from both algebraic number theory and first-order logic over (ℝ, 0, 1, + , *, < ) to yield a novel decidability algorithm. From a more general perspective, this paper exposes many new open questions about decidable combinations of real/integer logics.

This work is partially supported by PRIN ”BISCA” 2006011235, FIRB ”LIBI” RBLA039M7M, two NSF ITR grants, and one NSF EMT grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Composing semi-algebraic o-minimal automata. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 668–671. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Parallel composition of semi-algebraic o-minimal automata (January 2008), http://www.dimi.uniud.it/piazza/PAPERS/parallel.pdf

  3. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic Symbolic Verification of Embedded Systems. In: IEEE Real-Time Systems Symposium 1993, pp. 2–11. IEEE Press, Los Alamitos (1993)

    Chapter  Google Scholar 

  4. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proc. of Symp. on Theory of Computing (STOCS 1995), pp. 373–382 (1995)

    Google Scholar 

  5. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal Hybrid Systems. Mathematics of Control, Signals, and Systems 13, 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-Minimal Hybrid Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 219–233. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. Univ. California Press (1951)

    Google Scholar 

  8. van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  9. Casagrande, A., Piazza, C., Mishra, B.: Semi-Algebraic Constant Reset Hybrid Automata - SACoRe. In: Proc. of the 44rd Conference on Decision and Control (CDC 2005), pp. 678–683. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  10. Henzinger, T.A.: The Theory of Hybrid Automata. In: Proc. of IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278–292. IEEE Press, Los Alamitos (1996)

    Google Scholar 

  11. Miller, J.S.: Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  13. Bourbaki, N.: Elements of Mathematics. General topology II. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  14. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  15. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Synchronized product of semi-algebraic o-minimal hybrid automata. Technical report, University of Udine (October 2006), http://fsv.dimi.uniud.it/papers/syncro.pdf

    MATH  Google Scholar 

  16. Casagrande, A., Casey, K., Falchi, R., Piazza, C., Ruperti, B., Vizzotto, G., Mishra, B.: Translating Time-Course Gene Expression Profiles into Semi-algebraic Hybrid Automata Via Dimensionality Reduction. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 51–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casagrande, A., Corvaja, P., Piazza, C., Mishra, B. (2008). Decidable Compositions of O-Minimal Automata. In: Cha, S.(., Choi, JY., Kim, M., Lee, I., Viswanathan, M. (eds) Automated Technology for Verification and Analysis. ATVA 2008. Lecture Notes in Computer Science, vol 5311. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88387-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88387-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88386-9

  • Online ISBN: 978-3-540-88387-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics