Abstract
Anaphora resolution is an essential component of most NLP applications, from text understanding to Machine Translation. In this work we discuss a supervised machine learning approach to the problem, focusing on instances of anaphora ubiquitously found in a corpus of Brazilian Portuguese texts, namely, third-person pronominal references. Although still limited to a subset of the more general co-reference resolution problem, our present results are comparable to existing work in the field in both English and Portuguese languages, representing the highest accuracy rates that we are aware of in (Brazilian) Portuguese pronoun resolution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mitkov, R.: Anaphora Resolution. Longman, New York (2002)
Bick, E.: The parsing system PALAVRAS: automatic grammatical analysis of Portuguese in a constraint grammar framework. PhD Thesis, Aarhus University (2000)
Kennedy, C., Boguraev, B.: Anaphora for Everyone: Pronominal Anaphora Resolution without a Parser. In: 16th International Conference on Computational Linguistics (COLING-1996) Copenhagen, pp. 113–118 (1996)
Soon, W.M., et al.: A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics 27(4) (2001)
McCarthy, J.F., Lehnert, W.G.: Using Decision Trees for Coreference Resolution. In: 14th International Conference on Artificial Intelligence IJCAI 1995 (1995)
Ng, V., Cardie, C.: Improving Machine Learning Approaches to Coreference Resolution. In: 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, pp. 104–111 (2002)
Mitkov, R.: Multilingual Anaphora Resolution. Machine Translation 14(3-4), 281–299 (1999)
Chaves, A.: A resolução de anáforas pronominais da língua portuguesa com base no algoritmo de Mitkov. M.Sc. dissertation, University of São Carlos, Brazil (2007)
Coelho, T.T., Carvalho, A.M.B.R.: Uma adaptação de Lappin e Leass para resolução de anáforas em português. In: Anais do XXV Congresso da Sociedade Brasileira de Computação (III Workshop em Tecnologia a Informação e da Linguagem Humana – TIL 2005), São Leopoldo, Brazil, pp. 2069–2078 (2005)
Santos, D.N.A., Ariadne, M.B.R.: Carvalho Hobbs’ algorithm for pronoun resolution in Portuguese. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 966–974. Springer, Heidelberg (2007)
Hobbs, J.: Resolving pronoun references. Lingua 44, 311–338 (1978)
Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Computational Linguistics 20(4), 535–561 (1994)
Paraboni, I., de Lima, V.L.S.: Possessive Pronominal Anaphor Resolution in Portuguese Written Texts. In: 17th International Conference on Computational Linguistics (COLING 1998), pp. 1010–1014. Morgan Kaufmann, Montreal (1998)
Souza, J., Gonçalves, P., Vieira, R.: Learning Coreference Resolution for Portuguese Texts. In: International Conference on Computational processing of the Portuguese Language (Propor 2008), Aveiro, Portugal (September 2008)
Ramon Ré Moya, C., Honda, W.Y., de Lucena, D.J., Paraboni, I., Oliveira, P.R.: Portuguese Pronoun Resolution: Resources and Evaluation. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 344–350. Springer, Heidelberg (2008)
Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cuevas, R.R.M., Paraboni, I. (2008). A Machine Learning Approach to Portuguese Pronoun Resolution. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds) Advances in Artificial Intelligence – IBERAMIA 2008. IBERAMIA 2008. Lecture Notes in Computer Science(), vol 5290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88309-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-88309-8_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-88308-1
Online ISBN: 978-3-540-88309-8
eBook Packages: Computer ScienceComputer Science (R0)