A Region-Based Hashing Approach for Symbol Spotting in Technical Documents | SpringerLink
Skip to main content

A Region-Based Hashing Approach for Symbol Spotting in Technical Documents

  • Conference paper
Graphics Recognition. Recent Advances and New Opportunities (GREC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5046))

Included in the following conference series:

  • 555 Accesses

Abstract

In this paper a geometric hash function able to cluster similar shapes and its use for symbol spotting in technical documents is presented. A very compact representation of features describing each primitive composing a symbol are used as key indexes of a hash table. When querying a symbol in this indexing table a voting scheme is used to validate the hypothesis of where this symbol is likely to be found. This hashing technique aims to perform a fast spotting process to find candidate locations needing neither a previous segmentation step nor a priori knowledge or learning step involving multiple instances of the object to recognize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballard, D.H.: Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  2. Dosch, P., Lladós, J.: Vectorial Signatures for Symbol Discrimination. In: Lladós, J., Kwon, Y.B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 154–165. Springer, Heidelberg (2004)

    Google Scholar 

  3. Lamdan, Y., Wolfson, H.J.: Geometric Hashing: A General and Efficient Model-Based Recognition Scheme. In: 2nd International Conference on Computer Vision, pp. 238–249 (1988)

    Google Scholar 

  4. Lockwood, E.H.: A Book of Curves. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  5. Locteau, H., Adam, S., Trupin, E., Labiche, J., Héroux, P.: Symbol Spotting Using Full Visibility Graph Representation. In: 7th International Workshop on Graphics Recognition, pp. 49–50 (2007)

    Google Scholar 

  6. Müller, S., Rigoll, G.: Searching an Engineering Drawing Database for User-Specified Shapes. In: 5th International Conference on Document Analysis and Recognition, pp. 697–700 (1999)

    Google Scholar 

  7. Rosin, P.L., West, G.A.: Segmentation of Edges into Lines and Arcs. Image and Vision Computing 7(2), 109–114 (1989)

    Article  Google Scholar 

  8. Rusiñol, M., Lladós, J.: Symbol Spotting in Technical Drawings Using Vectorial Signatures. In: Wenyin, L., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 35–46. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Tabbone, S., Wendling, L., Zuwala, D.: A Hybrid Approach to Detect Graphical Symbols in Documents. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 342–353. Springer, Heidelberg (2004)

    Google Scholar 

  10. Tombre, K., Ah-Soon, C., Dosch, P., Masini, G., Tabbone, S.: Stable and Robust Vectorization: How to Make the Right Choices. In: Chhabra, A.K., Dori, D. (eds.) GREC 1999. LNCS, vol. 1941, pp. 3–18. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Zhang, D., Lu, G.: Review of Shape Representation and Description Techniques. Pattern recognition 37(1), 1–19 (2004)

    Article  MATH  Google Scholar 

  12. Zuwala, D., Tabbone, S.: A Method for Symbol Spotting in Graphical Documents. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 518–528. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wenyin Liu Josep Lladós Jean-Marc Ogier

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rusiñol, M., Lladós, J. (2008). A Region-Based Hashing Approach for Symbol Spotting in Technical Documents. In: Liu, W., Lladós, J., Ogier, JM. (eds) Graphics Recognition. Recent Advances and New Opportunities. GREC 2007. Lecture Notes in Computer Science, vol 5046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88188-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88188-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88184-1

  • Online ISBN: 978-3-540-88188-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics