Transitive Observation-Based Causation, Saliency, and the Markov Condition | SpringerLink
Skip to main content

Transitive Observation-Based Causation, Saliency, and the Markov Condition

  • Conference paper
Scalable Uncertainty Management (SUM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5291))

Included in the following conference series:

  • 506 Accesses

Abstract

If A caused B and B caused C, did A caused C? Although causality is generally regarded as transitive, some philosophers have questioned this assumption, and models of causality in artificial intelligence are often agnostic with respect to transitivity: They define causation, then check whether the definition makes all, or only some, causal arguments transitive. We consider two formal models of observation-based causation, which differ in the way they represent uncertainty. The quantitative model uses a standard probabilistic definition; the qualitative model uses a definition based on nonmonotonic consequence. The two models identify different sufficient conditions for the transitivity of causation: The Markov condition on events for the quantitative model, and a Saliency condition (if B is true then generally A is true) for the qualitative model. We explore the formal relations between these sufficient conditions, and between the underlying definitions of observation-based causation. These connections shed light on the range of applicability of both models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hesslow, G.: The transitivity of causation. Analysis 41, 130–133 (1981)

    Article  Google Scholar 

  2. Lowe, E.J.: For want of a nail. Analysis 40, 50–52 (1980)

    Article  Google Scholar 

  3. Mackie, J.L.: The transitivity of counterfactuals and causation. Analysis 40, 53–54 (1980)

    Article  Google Scholar 

  4. Bjornsson, G.: How effects depend on their causes,why causal transitivity fails, and why we care about causation. Philosophical Studies 133, 349–390 (2007)

    Article  MathSciNet  Google Scholar 

  5. Hall, N.: Causation and the price of transitivity. Journal of Philosophy 97, 198–222 (2000)

    Article  Google Scholar 

  6. Hitchcock, C.: The intransitivity of causation revealed in equations and graphs. Journal of Philosophy 98, 273–299 (2001)

    Article  MathSciNet  Google Scholar 

  7. Halpern, J., Pearl, J.: Causes and explanations: A structural-model approach — part 1: Causes. British Journal for the Philosophy of Science 56, 843–887 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Good, I.J.: A causal calculus I. British Journal for the Philosophy of Science 11, 305–318 (1961)

    Article  MathSciNet  Google Scholar 

  10. Good, I.J.: A causal calculus II. British Journal for the Philosophy of Science 12, 43–51 (1962)

    MathSciNet  Google Scholar 

  11. Benferhat, S., Bonnefon, J.F., Chassy, P., Da Silva Neves, R.M., Dubois, D., Dupin de Saint-Cyr, F., Kayser, D., Nouioua, F., Nouioua-Boutouhami, S., Prade, H., Smaoui, S.: A comparative study of six formal models of causal ascription. In: SUM 2008 (2008)

    Google Scholar 

  12. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  13. Eells, E., Sober, E.: Probabilistic causality and the question of transitivity. Philosophy of Science 50, 35–57 (1983)

    Article  MathSciNet  Google Scholar 

  14. Bonnefon, J.F., Da Silva Neves, R.M., Dubois, D., Prade, H.: Background default knowledge and causality ascriptions. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), Zurich, pp. 11–15. IOS Press, Amsterdam (2006)

    Google Scholar 

  15. Bonnefon, J.F., Da Silva Neves, R.M., Dubois, D., Prade, H.: Predicting causality ascriptions from background knowledge: Model and experimental validation. International Journal of Approximate Reasoning 48, 752–765 (2008)

    Article  Google Scholar 

  16. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Benferhat, S., Bonnefon, J.F., Da Silva Neves, R.M.: An overview of possibilistic handling of default reasoning, with experimental studies. Synthese 146, 53–70 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pfeifer, N., Kleiter, G.D.: Coherence and nonmonotonicity in human nonmonotonic reasoning. Synthese 146, 93–109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic semantics of conditional knowledge bases. Journal of Logic and Computation 9, 873–895 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relations: Main results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR 1994: Principles of Knowledge Representation and Reasoning, pp. 170–177. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  21. Adams, E.: The logic of conditionals: An application of probability to deductive logic. Reidel, Dordrecht (1975)

    MATH  Google Scholar 

  22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  23. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence 92, 259–276 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dubois, D., Godo, L., Lopez de Mantaras, R., Prade, H.: Qualitative reasoning with imprecise probabilities. Journal of Intelligent Information Systems 2, 319–363 (1993)

    Article  Google Scholar 

  25. Salmon, W.C.: Causality and Explanation. Oxford University Press, New York (1998)

    Google Scholar 

  26. Buehner, M., Cheng, P., Clifford, D.: From covariation to causation: A test of the assumption of causal power. Journal of Experimental Psychology: Learning, Memory, and Cognition 29, 1119–1140 (2003)

    Article  Google Scholar 

  27. Lober, K., Shanks, D.: Is causal induction based on causal power? Critique of Cheng. Psychological Review 107(2000), 195–212 (1997)

    Google Scholar 

  28. Dubois, D., Fariñas Del Cerro, L., Herzig, A., Prade, H.: A roadmap of qualitative independence. In: Dubois, D., Prade, H., Klement, E.P. (eds.) Fuzzy Sets, Logics and Reasoning about Knowledge. Applied Logic series, vol. 15, pp. 325–350. Kluwer, Dordrecht (1999)

    Google Scholar 

  29. Bonnefon, J.F., Da Silva Neves, R.M., Dubois, D., Prade, H.: Is causality transitive? It depends on the alternatives. In: The European Cognitive Science Conference, Delphi, Greece (May 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonnefon, JF., Dubois, D., Prade, H. (2008). Transitive Observation-Based Causation, Saliency, and the Markov Condition. In: Greco, S., Lukasiewicz, T. (eds) Scalable Uncertainty Management. SUM 2008. Lecture Notes in Computer Science(), vol 5291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87993-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87993-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87992-3

  • Online ISBN: 978-3-540-87993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics