Deterministic Rendezvous in Trees with Little Memory | SpringerLink
Skip to main content

Deterministic Rendezvous in Trees with Little Memory

  • Conference paper
Distributed Computing (DISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5218))

Included in the following conference series:

  • 904 Accesses

Abstract

We study the size of memory of mobile agents that permits to solve deterministically the rendezvous problem, i.e., the task of meeting at some node, for two identical agents moving from node to node along the edges of an unknown anonymous connected graph. The rendezvous problem is unsolvable in the class of arbitrary connected graphs, as witnessed by the example of the cycle. Hence we restrict attention to rendezvous in trees, where rendezvous is feasible if and only if the initial positions of the agents are not symmetric. We prove that the minimum memory size guaranteeing rendezvous in all trees of size at most n is Θ(logn) bits. The upper bound is provided by an algorithm for abstract state machines accomplishing rendezvous in all trees, and using O(logn) bits of memory in trees of size at most n. The lower bound is a consequence of the need to distinguish between up to n − 1 links incident to a node. Thus, in the second part of the paper, we focus on the potential existence of pairs of finite agents (i.e., finite automata) capable of accomplishing rendezvous in all bounded degree trees. We show that, as opposed to what has been proved for the graph exploration problem, there are no finite agents capable of accomplishing rendezvous in all bounded degree trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979)

    Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher, Dordrecht (2002)

    Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J. on Control and Optimization 33, 1270–1276 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  8. Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)

    Google Scholar 

  10. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics 48, 722–731 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC 1990), pp. 369–378 (1990)

    Google Scholar 

  15. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 375–381 (1989)

    Google Scholar 

  20. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)

    Article  MATH  Google Scholar 

  22. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 585–594 (2007)

    Google Scholar 

  23. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131 (1990)

    Google Scholar 

  24. Kowalski, D., Malinowski, A.: How to meet in anonymous network. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Proc. 8th Latin American Theoretical INformatics (LATIN) (2008)

    Google Scholar 

  26. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)

    Google Scholar 

  27. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)

    Google Scholar 

  29. Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)

    MATH  Google Scholar 

  30. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gadi Taubenfeld

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Pelc, A. (2008). Deterministic Rendezvous in Trees with Little Memory. In: Taubenfeld, G. (eds) Distributed Computing. DISC 2008. Lecture Notes in Computer Science, vol 5218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87779-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87779-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87778-3

  • Online ISBN: 978-3-540-87779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics