Abstract
We study the size of memory of mobile agents that permits to solve deterministically the rendezvous problem, i.e., the task of meeting at some node, for two identical agents moving from node to node along the edges of an unknown anonymous connected graph. The rendezvous problem is unsolvable in the class of arbitrary connected graphs, as witnessed by the example of the cycle. Hence we restrict attention to rendezvous in trees, where rendezvous is feasible if and only if the initial positions of the agents are not symmetric. We prove that the minimum memory size guaranteeing rendezvous in all trees of size at most n is Θ(logn) bits. The upper bound is provided by an algorithm for abstract state machines accomplishing rendezvous in all trees, and using O(logn) bits of memory in trees of size at most n. The lower bound is a consequence of the need to distinguish between up to n − 1 links incident to a node. Thus, in the second part of the paper, we focus on the potential existence of pairs of finite agents (i.e., finite automata) capable of accomplishing rendezvous in all bounded degree trees. We show that, as opposed to what has been proved for the graph exploration problem, there are no finite agents capable of accomplishing rendezvous in all bounded degree trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proc. 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979)
Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)
Alpern, S.: Rendezvous search on labelled networks. Naval Reaserch Logistics 49, 256–274 (2002)
Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher, Dordrecht (2002)
Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)
Alpern, S., Gal, S.: Rendezvous search on the line with distinguishable players. SIAM J. on Control and Optimization 33, 1270–1276 (1995)
Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)
Anderson, E., Essegaier, S.: Rendezvous search on the line with indistinguishable players. SIAM J. on Control and Optimization 33, 1637–1642 (1995)
Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proc. 14th Annual ACM Symp. on Computational Geometry (1998)
Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49, 107–118 (2001)
Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. on Control and Optimization 36, 1880–1889 (1998)
Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Reaserch Logistics 48, 722–731 (2001)
Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal of Algorithms 8(5), 385–394 (1987)
Coppersmith, D., Doyle, P., Raghavan, P., Snir, M.: Random walks on weighted graphs, and applications to on-line algorithms. In: Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC 1990), pp. 369–378 (1990)
Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. on Discrete Math. 6, 363–374 (1993)
De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)
Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)
Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. Journal of Algorithms 51, 38–63 (2004)
Dyer, M., Frieze, A., Kannan, R.: A random polynomial time algorithm for estimating volumes of convex bodies. In: Proc. 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 375–381 (1989)
Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)
Gal, S.: Rendezvous search on the line. Operations Research 47, 974–976 (1999)
Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 585–594 (2007)
Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proc. 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131 (1990)
Kowalski, D., Malinowski, A.: How to meet in anonymous network. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)
Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Proc. 8th Latin American Theoretical INformatics (LATIN) (2008)
Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599 (2003)
Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)
Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)
Thomas, L.: Finding your kids when they are lost. Journal on Operational Res. Soc. 43, 637–639 (1992)
Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fraigniaud, P., Pelc, A. (2008). Deterministic Rendezvous in Trees with Little Memory. In: Taubenfeld, G. (eds) Distributed Computing. DISC 2008. Lecture Notes in Computer Science, vol 5218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87779-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-87779-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87778-3
Online ISBN: 978-3-540-87779-0
eBook Packages: Computer ScienceComputer Science (R0)