Structure Automatic Change in Neural Network | SpringerLink
Skip to main content

Structure Automatic Change in Neural Network

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

  • 3129 Accesses

Abstract

In this paper, we propose a novel structure automatic change algorithm for neural-network. It can solve the problem that most neural-networks can not change the structure online. This algorithm consists of two main steps: 1) The computation of the neural-network ability to judge whether need to add nodes to the hidden layer or pruning, we use the improved support vector machine (SVM) to decide when and where to change the structure of neural-network hidden layer in this step; 2) Adjusting the parameter of the neural-network, this learning rule for the neural-network is a novel approach based on the modified back-propagation (BP). On the basis of the former methods, we propose a structure automatic changed neural network (SACNN). Finally, the SACNN is applied to track the nonlinear functions, the simulation results show that the results by this neural network perform better than the former growing cell structure (GCS) neural-network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tani, J., Nishimoto, R., Namikawa, J., Ito, M.: Codevelopmental Learning Between Human and Humanoid Robot Using a Dynamic Neural-Network Model. IEEE Trans. Syst., Man Cybern. B 38(1), 43–59 (2008)

    Article  Google Scholar 

  2. Fritzke, B.: Growing Cell Structures–a Self-organizing Network for Unsupervised and Supervised Learning. Neural Network 7(9), 1411–1460 (1994)

    Article  Google Scholar 

  3. Burzevski, V., Mohan, C.K.: Hierarchical Growing Cell Structures. In: Proceedings of the IEEE international conference on neural networks, vol. 3, pp. 1658–1663 (1996)

    Google Scholar 

  4. Adams, R.G., Butchart, K., Davey, N.: Hierarchical Classification With a Competitive Evolutionary Neural Tree. Neural Networks 12, 541–551 (1999)

    Article  Google Scholar 

  5. Li, T., Tan, Y., Suen, S., Fang, L.: A Structurally Adaptive Neural Tree for Recognition of a Large Character Set. In: Proc. 11th IAPR international joint conference on pattern recognition, vol. 2, pp. 187–190 (1992)

    Google Scholar 

  6. Marsland, S., Shapiro, J., Nehmzow, U.: A Self-organizing Network That Grows When Required. Neural Network 15, 1041–1058 (2002)

    Article  Google Scholar 

  7. Cun, Y., Le., D.J.S., Solla, S.A.: Optimal Brain Damage. In: Advances in Neural Information Processing Systems, San Mateo, CA, vol. 2 (1990)

    Google Scholar 

  8. Hassibi, B., Stork, D.G.: Optimal Brain Surgeon and General Network Pruning. In: Proc. IEEE Int. Conf. Neural Networks, San Francisco, CA, pp. 293–300 (1993)

    Google Scholar 

  9. Mak, B., Chan, K.-W.: Pruning Hidden Markov Models with Optimal Brain Surgeon. IEEE Transaction on Speech and Audio Processing 13(5), 993–1003 (2005)

    Article  Google Scholar 

  10. Qiao, J.-F., Zhang, Y., Han, H.-G.: Fast Unit Pruning Algorithm for Feed Forward Neural Network Design. Applied Mathematics and Computation 7, 291–299 (2008)

    Google Scholar 

  11. Anders, U., Korn, O.: Model Selection in Neural Networks. Neural Networks 12, 309–323 (1999)

    Article  Google Scholar 

  12. Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  13. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic, New York (2006)

    MATH  Google Scholar 

  14. Lin, K.M., Lin, C.J.: A Study on Reduced Support Vector Machines. IEEE Trans. Neural Network 14(6), 1449–1459 (2002)

    Google Scholar 

  15. Zhou, S.-M., Gan, J.Q.: Constructing L2-SVM-Based Fuzzy Classifiers in High-Dimensional Space with Automatic Model Selection and Fuzzy Rule Ranking. IEEE Trans. Fuzzy Syst. 15(3), 398–409 (2007)

    Article  Google Scholar 

  16. Lin, C.T., Yeh, C.M., Liang, S.F., Chung, J.F., Kumar, N.: Support-vector-based Fuzzy Neural Network for Pattern Classification. IEEE Trans. Fuzzy Syst. 14(1), 31–41 (2006)

    Article  Google Scholar 

  17. Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers. IEEE Trans. Signal Process 45(11), 2758–2765 (1997)

    Article  Google Scholar 

  18. Chiang, J.H., Hao, P.Y.: Support Vector Learning Mechanism for Fuzzy Rule-based Modeling: A New Approach. IEEE Trans. Fuzzy Syst. 12(1), 1–12 (2004)

    Article  Google Scholar 

  19. Wang, D.C., et al.: Support Vector Machines Regression On-line Modeling and Its Application. Control Decision 18(1), 89–95 (2003)

    Google Scholar 

  20. Cauwenberghs, G., et al.: Incremental and Decremental Support Vector Machine Learning. In: Fourteenth conference on Advances in Neural Information Processing Systems, NIPS, pp. 409–423 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Honggui, H., Junfei, Q., Xinyuan, L. (2008). Structure Automatic Change in Neural Network. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics