An Estimation of the Optimal Gaussian Kernel Parameter for Support Vector Classification | SpringerLink
Skip to main content

An Estimation of the Optimal Gaussian Kernel Parameter for Support Vector Classification

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

Abstract

The selection of kernel function and its parameters has heavy influence on the generalization performance of support vector machine (SVM), and it becomes a focus on SVM researches. At present, there are not general rules to select an optimal kernel function for a given problem yet, alternatively, Gaussian and Polynomial kernels are commonly used for practice applications. Based on the relationship analysis of Gaussian kernel support vector machine and scale space theory, this paper proves the existence of a certain range of the parameter σ , within the range the generalization performance is good. An appropriate σ within the range can be achieved via dynamic evaluation as well. Simulation results demonstrate the feasibility and effectiveness of the presented approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14299
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broomhead, D.S., Lowe, D.: Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  2. Byun, H., Lee, S.W.: Applications of Support Vector Machines for Pattern Recognition. In: Proc. of the International Workshop on Pattern Recognition with Support vector machine, pp. 213–236. Springer, Niagara Falls (2002)

    Chapter  Google Scholar 

  3. Rennie, J., Rifkin, R.: Improving Multiclass Text Classification with the Support Vector Machine. Technology Report AI Memo AIM-2001-026 and CCL Memo 210. Massachusetts Institute of Technology, MIT (October 2001)

    Google Scholar 

  4. Tsuda, K., Ratsch, G., Mika, S., et al.: Learning to Predict the Leave-One-Out Error of Kernel Based Classifiers. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 331–338. Springer, Heidelberg (2001)

    Google Scholar 

  5. Seeger, M.: Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers. In: Advances in Neural Information Systems, vol. 12, pp. 603–649. MIT Press, Cambridge (2000)

    Google Scholar 

  6. Wu, S., Amari, S.: Conformal Transformation of Kernel Functions: a Data-dependent Way to Improve Support Vector Machine Classifiers. Neural Processing Letters 15, 59–67 (2002)

    Article  MATH  Google Scholar 

  7. Van, T.G., Sukens, J.A.K., Baestaens, D.E., et al.: Financial Time Series Prediction Using Least Squares Support Vector Machines within the Evidence Framework. IEEE Transaction on Neural Networks 12, 809–821 (2001)

    Article  Google Scholar 

  8. Vapnik, V.: The Nature of Statistical Learning Theory. Wiley, Chichester (1995)

    MATH  Google Scholar 

  9. Wang, W.J., Xu, Z.B., Lu, W.Z., Zhang, X.Y.: Determination of the Spread Parameter in the Gaussian Kernel for Classification and Regression. Neurocomputing 55, 643–663 (2003)

    Article  Google Scholar 

  10. Leung, Y., Zhang, J.S., Xu, Z.B.: Clustering by Scale-Space Filtering. IEEE Transaction Pattern Anal. Machine Intell. 22, 1369–1410 (2000)

    Google Scholar 

  11. Li, Y., Gong, S., Sherrah, J., Liddell, H.: Multi-View Face Detection Using Support Vector Machines and Eigenspace Modeling. In: 4th International Conference on Knowledge-Based Intelligent Engineering System and Allied Technologies, Brighton, UK, pp. 241–244 (2000)

    Google Scholar 

  12. Zhou, W.D., Zhang, L., Jiao, L.C.: An Improved Principle for Measuring Generalization Performance. Chinese Journal of Computers 26, 598–604 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, W., Ma, L. (2008). An Estimation of the Optimal Gaussian Kernel Parameter for Support Vector Classification. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics