An Evolutionary Approach for Vector Quantization Codebook Optimization | SpringerLink
Skip to main content

An Evolutionary Approach for Vector Quantization Codebook Optimization

  • Conference paper
Advances in Neural Networks - ISNN 2008 (ISNN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5263))

Included in the following conference series:

  • 3083 Accesses

Abstract

This paper proposes a hybrid evolutionary algorithm based on an accelerated version of K-means integrated with a modified genetic algorithm (GA) for vector quantization (VQ) codebook optimization. From simulation results involving image compression based on VQ, it is observed that the proposed method leads to better codebooks when compared with the conventional one (GA + standard K-means), in the sense that the former leads to higher peak signal-to-noise ratio (PSNR) results for the reconstructed images. Additionally, it is observed that the proposed method requires fewer GA generations (up to 40%) to achieve the best PSNR results produced by the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14299
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Boston (1992)

    MATH  Google Scholar 

  2. Linde, Y., Buzo, A., Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE Trans. on Communications 28, 84–95 (1980)

    Article  Google Scholar 

  3. Lee, D., Baek, S., Sung, K.: Modified K-means Algorithm for Vector Quantizer Design. IEEE Signal Processing Lett. 4, 2–4 (1997)

    Article  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  5. Mitchell, M., Holland, J.H.: When Will a Genetic Algorithm Outperform Hill Climbing? In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, pp. 51–58. Morgan Kaufmann, San Mateo (1994)

    Google Scholar 

  6. Krishna, K., Murty, M.: Genetic K-means Algorithm. IEEE Trans. on Systems, Man and Cybernetics 29, 433–439 (1999)

    Article  Google Scholar 

  7. Fränti, P.: Genetic Algorithm with Deterministic Crossover for Vector Quantization. Pattern Recog. Lett. 21, 61–68 (2000)

    Article  Google Scholar 

  8. Fränti, P., Kivijärvi, J., Kaukoranta, T., Nevalainen, O.: Genetic Algorithm for Codebook Generation in Vector Quantization. In: 3rd Nordic Workshop on Genetic Algorithms, Helsinki, pp. 207–222 (1997)

    Google Scholar 

  9. Smith, J.: On Replacement Strategies in Steady State Evolutionary Algorithms. Evol. Comput. 15, 29–59 (2007)

    Article  Google Scholar 

  10. Leung, F., Lam, H., Ling, S., Tam, P.: Tunning of the Structure and Parameters of a Neural Network Using and Improved Genetic Algorithm. IEEE Trans. on Neural Networks 14, 79–88 (2003)

    Article  Google Scholar 

  11. Madeiro, F., Lopes, W.T.A., Aguiar Neto, B.G., Alencar, M.S.: Complexidade Computacional de um Algoritmo Competitivo Aplicado ao Projeto de Quantizadores Vetoriais. Learning and Nonlinear Models 2, 34–48 (2004)

    Google Scholar 

  12. Gordon, V.S., Pirie, R., Wachter, A., Sharp, S.: Terrain-Based Genetic Algorithm (TBGA): Modeling Parameter Space as Terrain. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 229–235. Morgan Kaufmann, Orlando (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Azevedo, C.R.B., Bispo, E.L., Ferreira, T.A.E., Madeiro, F., Alencar, M.S. (2008). An Evolutionary Approach for Vector Quantization Codebook Optimization. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87732-5_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87731-8

  • Online ISBN: 978-3-540-87732-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics