Abstract
Mixed-Integer Evolution Strategies (MIES) are a natural extension of standard Evolution Strategies (ES) for addressing optimization of various types of variables – continuous, ordinal integer, and nominal discrete – at the same time. Like most Evolutionary Algorithms (EAs), they experience problems in obtaining the global optimum in highly multimodal search landscapes. Niching methods, the extension of EAs to multimodal domains, are designed to treat this issue. In this study we present a dynamic niching technique for Mixed-Integer Evolution Strategies, based upon an existing ES niching approach, which was developed recently and successfully applied to continuous landscapes. The new approach is based on the heterogeneous distance measure that addresses search space similarity in a way consistent with the mutation operators of the MIES. We apply the proposed Dynamic Niching MIES framework to a test-bed of artificial landscapes and show the improvement on the global convergence in comparison to the standard MIES algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, Edinburgh, UK, September 2-4, 2005. IEEE, Los Alamitos (2005)
Bäck, Th.: Evolutionary algorithms in theory and practice. Oxford University Press, New York (1996)
Bäck, Th., Schütz, M.: Evolution strategies for mixed-integer optimization of optical multilayer systems. In: Evolutionary Programming, pp. 33–51 (1995)
Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Parmee, I.C. (ed.) Evolutionary Design and Manufacture - Selected papers from ACDM 2000, pp. 55–67. Springer, Heidelberg (2000)
Kauffman, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of theoretical biology 128(1), 11–45 (1987)
Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Mixed-Integer NK Landscapes. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 42–51. Springer, Heidelberg (2006)
Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Cattolico, M. (ed.) [8], pp. 1645–1652
Cattolico, M. (ed.): Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2006. ACM Press, Seattle (2006)
Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC 1996), pp. 786–791 (1996)
Preuss, M., Schönemann, L., Emmerich, M.T.M.: Counteracting genetic drift and disruptive recombination in (μ + /,λ)-ea on multimodal fitness landscapes. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2005, pp. 865–872. ACM Press, New York (2005)
Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)
Schönemann, L., Emmerich, M.T.M., Preuss, M.: On the extinction of evolutionary algorithms sub-populations on multimodal landscapes. Informatica - Special Issue on Bioinspired Optimization 28(4), 345–351 (2004)
Schwefel, H.-P.: Evolution and Optimum Seeking: The Sixth Generation. John Wiley & Sons, Inc., New York (1993)
Shir, O.M., Bäck, Th.: Dynamic niching in evolution strategies with covariance matrix adaptation. In: Congress on Evolutionary Computation [1], pp. 2584–2591
Shir, O.M., Bäck, Th.: Niching with Derandomized Evolution Strategies in Artificial and Real-World Landscapes. Natural Computing (2008)
Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: Cattolico, M. (ed.) [8], pp. 1305–1312
Stoean, C., Preuss, M., Gorunescu, R., Dumitrescu, D.: Elitist generational genetic chromodynamics - a new radii-based evolutionary algorithm for multimodal optimization. In: Congress on Evolutionary Computation [1], pp. 1839–1846
Streichert, F., Stein, G., Ulmer, H., Zell, A.: A clustering based niching method for evolutionary algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 644–645. Springer, Heidelberg (2003)
Mahfoud, S.W.: Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana Champaign (1995)
Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, R. et al. (2008). Mixed-Integer Evolution Strategies with Dynamic Niching. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-87700-4_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87699-1
Online ISBN: 978-3-540-87700-4
eBook Packages: Computer ScienceComputer Science (R0)