Mixed-Integer Evolution Strategies with Dynamic Niching | SpringerLink
Skip to main content

Mixed-Integer Evolution Strategies with Dynamic Niching

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Abstract

Mixed-Integer Evolution Strategies (MIES) are a natural extension of standard Evolution Strategies (ES) for addressing optimization of various types of variables – continuous, ordinal integer, and nominal discrete – at the same time. Like most Evolutionary Algorithms (EAs), they experience problems in obtaining the global optimum in highly multimodal search landscapes. Niching methods, the extension of EAs to multimodal domains, are designed to treat this issue. In this study we present a dynamic niching technique for Mixed-Integer Evolution Strategies, based upon an existing ES niching approach, which was developed recently and successfully applied to continuous landscapes. The new approach is based on the heterogeneous distance measure that addresses search space similarity in a way consistent with the mutation operators of the MIES. We apply the proposed Dynamic Niching MIES framework to a test-bed of artificial landscapes and show the improvement on the global convergence in comparison to the standard MIES algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16587
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, Edinburgh, UK, September 2-4, 2005. IEEE, Los Alamitos (2005)

    Google Scholar 

  2. Bäck, Th.: Evolutionary algorithms in theory and practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  3. Bäck, Th., Schütz, M.: Evolution strategies for mixed-integer optimization of optical multilayer systems. In: Evolutionary Programming, pp. 33–51 (1995)

    Google Scholar 

  4. Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Parmee, I.C. (ed.) Evolutionary Design and Manufacture - Selected papers from ACDM 2000, pp. 55–67. Springer, Heidelberg (2000)

    Google Scholar 

  5. Kauffman, S.: Towards a general theory of adaptive walks on rugged landscapes. Journal of theoretical biology 128(1), 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  6. Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Mixed-Integer NK Landscapes. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 42–51. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Bäck, Th., Dijkstra, J., Reiber, J.H.C.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Cattolico, M. (ed.) [8], pp. 1645–1652

    Google Scholar 

  8. Cattolico, M. (ed.): Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2006. ACM Press, Seattle (2006)

    Google Scholar 

  9. Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (ICEC 1996), pp. 786–791 (1996)

    Google Scholar 

  10. Preuss, M., Schönemann, L., Emmerich, M.T.M.: Counteracting genetic drift and disruptive recombination in (μ + /,λ)-ea on multimodal fitness landscapes. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2005, pp. 865–872. ACM Press, New York (2005)

    Chapter  Google Scholar 

  11. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Schönemann, L., Emmerich, M.T.M., Preuss, M.: On the extinction of evolutionary algorithms sub-populations on multimodal landscapes. Informatica - Special Issue on Bioinspired Optimization 28(4), 345–351 (2004)

    Google Scholar 

  13. Schwefel, H.-P.: Evolution and Optimum Seeking: The Sixth Generation. John Wiley & Sons, Inc., New York (1993)

    Google Scholar 

  14. Shir, O.M., Bäck, Th.: Dynamic niching in evolution strategies with covariance matrix adaptation. In: Congress on Evolutionary Computation [1], pp. 2584–2591

    Google Scholar 

  15. Shir, O.M., Bäck, Th.: Niching with Derandomized Evolution Strategies in Artificial and Real-World Landscapes. Natural Computing (2008)

    Google Scholar 

  16. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: Cattolico, M. (ed.) [8], pp. 1305–1312

    Google Scholar 

  17. Stoean, C., Preuss, M., Gorunescu, R., Dumitrescu, D.: Elitist generational genetic chromodynamics - a new radii-based evolutionary algorithm for multimodal optimization. In: Congress on Evolutionary Computation [1], pp. 1839–1846

    Google Scholar 

  18. Streichert, F., Stein, G., Ulmer, H., Zell, A.: A clustering based niching method for evolutionary algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 644–645. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana Champaign (1995)

    Google Scholar 

  20. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, R. et al. (2008). Mixed-Integer Evolution Strategies with Dynamic Niching. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics