Towards a Rule-Based Matcher Selection | SpringerLink
Skip to main content

Towards a Rule-Based Matcher Selection

  • Conference paper
Knowledge Engineering: Practice and Patterns (EKAW 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5268))

Abstract

The central problems w.r.t. interoperability and data integration issues in the Semantic Web are schema and ontology matching approaches. Today it takes an expert to determine the best algorithm and a decision can usually be made only after experimentation, so as both the necessary scaling and off-the-shelf use of matching algorithms are not possible. To tackle these issues, we present a rule-based evaluation method in which the best algorithms are determined semi-automatically and the selection performs prior to the execution of an algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9952
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The Impact of Semantic Web Technologies on Job Recruitment Processes. In: Proc. of the Int. Conf. Wirtschaftsinformatik, pp. 1367–1383 (2005)

    Google Scholar 

  2. Castano, S., Ferrara, A., Montanelli, S.: Methods and Techniques for Ontology-based Semantic Interoperability in Networked Enterprise Contexts. In: Proc. of the Workshop On Enterprise Modelling and Ontologies for Interoperability (2004)

    Google Scholar 

  3. Castano, S., Ferrara, A., Montanelli, S., Racca, G.: Matching techniques for resource discovery in distributed systems using heterogeneous ontology descriptions. In: Proc. of the Int. Conf. on IT: Coding and Computing (ITCC 2004), pp. 360–366. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  4. Chen, Y.: Automatic Generation of Ontology Metadata. Technical report, Diploma-Thesis, Freie Universität Berlin (April 2006)

    Google Scholar 

  5. Datta, L.-E., Morra, L.G., Friedlander, A.C.: Program Evaluation and Methodlogy Division. Case Study Evaluations. US General Accounting Office (1990)

    Google Scholar 

  6. Do, H.-H., Rahm, E.: COMA-a system for flexible combination of schema matching approaches. In: Proc. of the 28th Intl. Conf. on Very Large Databases (2002)

    Google Scholar 

  7. Doan, A.-H., Madhavan, J., Domingos, P., Halevy, A.: Ontology Matching: A Machine Learning Approach. In: Handbook on Ontologies, pp. 385–516. Springer, Heidelberg (2004)

    Google Scholar 

  8. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. Fernandez-Lopez, M., Gomez-Perez, A.: Overview and analysis of methodologies for building ontologies. Knowledge Engineering Review 17(2), 129–156 (2002)

    Google Scholar 

  10. Giuchiglia, F., Shvaiko, P.: Semantic Matching. The Knowledge Engineering Review (KER) Journal 18(3), 265–280 (2004)

    Article  Google Scholar 

  11. Hu, W., Cheng, G., Zheng, D., Zhong, X., Qu, Y.: The Results of Falcon-AO in the OAEI 2006 Campaign. In: Proc. of the Int. Workshop on Ontology Matching colloc. with the ISWC 2006 (2006)

    Google Scholar 

  12. Hartmann, J., Paslaru Bontas, E., Palma, R., Gmez-Prez, A.: DEMO - A Design Environment for Metadata About Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 427–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proc. of the 27th VLDB Conference, pp. 48–58 (2001)

    Google Scholar 

  14. Lemley, M.A., O’Brien, D.W.: Encouraging software reuse. Stanford Law Review 49(2), 255–304 (1997)

    Article  Google Scholar 

  15. Harzallah, M., Huza, M., Trichet, F.: OntoMas: a tutoring system dedicated to ontology matching. In: Proc. of the Int. Workshop on Ontology Matching colloc. with the ISWC 2006 (2006)

    Google Scholar 

  16. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and Reasoning about Mappings between Domain Models. In: Proc. of the 18th Nat. Conf. on AI and 4th Conf. on Innovative Applications of AI, pp. 80–86 (2002)

    Google Scholar 

  17. McGuinness, D., Fikes, R., Rice, J., Wilder, S.: The Chimaera ontology environment. In: Proc. of the 17th National Conference on AI, pp. 1123–1124 (2000)

    Google Scholar 

  18. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm and Its Application to Schema Matching. In: Proc. of the 18th International Conference on Data Engineering (ICDE 2002) (2002)

    Google Scholar 

  19. Mochol, M., Jenztsch, A., Euzenat, J.: Applying an Analytic Method for Matching Approach Selection. In: Proc. of the Int. Workshop on Ontology Matching colloc. with the ISWC 2006 (2006)

    Google Scholar 

  20. Paslaru, E.: Using Context Information to Improve Ontology Reuse. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520. Springer, Heidelberg (2005)

    Google Scholar 

  21. Paslaru, E., Mochol, M., Tolksdorf, R.: Case Studies on Ontology Reuse. In: Proc. of the 5th International Conference on Knowledge Management (2005)

    Google Scholar 

  22. Poole, J., Campbell, J.: A Novel Algorithm for Matching Conceptual and Related Graphs. Conceptual Structures: Appl., Impl. and Theory, 293–307 (1995)

    Google Scholar 

  23. Stumme, G., Maedche, A.: FCA-MERGE: Bottom-up merging of ontologies. In: Proc. of the 17th IJCAI 2001, pp. 225–230 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aldo Gangemi Jérôme Euzenat

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mochol, M., Jentzsch, A. (2008). Towards a Rule-Based Matcher Selection. In: Gangemi, A., Euzenat, J. (eds) Knowledge Engineering: Practice and Patterns. EKAW 2008. Lecture Notes in Computer Science(), vol 5268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87696-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87696-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87695-3

  • Online ISBN: 978-3-540-87696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics