Using CBR Systems for Leukemia Classification | SpringerLink
Skip to main content

Using CBR Systems for Leukemia Classification

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

  • 1616 Accesses

Abstract

The continuous advances in genomics, and specifically in the field of transcriptome, require novel computational solutions capable of dealing with great amounts of data. Each expression analysis needs different techniques to explore the data and extract knowledge which allow patients classification. This paper presents a hybrid systems based on Case-based reasoning (CBR) for automatic classification of leukemia patients from Exon array data. The system incorporates novel algorithms for data mining that allow to filter and classify. The system has been tested and the results obtained are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shortliffe, E.H., Cimino, J.J.: Biomedical Informatics: Computer Applications in Health Care and Biomedicine. Springer, Heidelberg (2006)

    Google Scholar 

  2. Tsoka, S., Ouzounis, C.: Recent developments and future directions in computational genomics. FEBS Letters 480(1), 42–48 (2000)

    Article  Google Scholar 

  3. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  Google Scholar 

  4. Rubnitz, J.E., Hijiya, N., Zhou, Y., Hancock, M.L., Rivera, G.K., Pui, C.: Lack of benefit of early detection of relapse after completion of therapy for acute lymphoblastic leukemia. Pediatric Blood & Cancer 44(2), 138–141 (2005)

    Article  Google Scholar 

  5. Affymetrix, GeneChip Human Exon 1.0 ST Array, http://www.affymetrix.com/products/arrays/specific/Exon.affx

  6. Quackenbush, J.: Computational analysis of microarray data. Nature Review Genetics 2(6), 418–427 (2001)

    Article  Google Scholar 

  7. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., Lockhart, D.H.: High density synthetic oligonucleotide arrays. Nature Genetics 21, 20–24 (1999)

    Article  Google Scholar 

  8. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  9. Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P.: Exploration, Normalization, and Summaries of High density Oligonucleotide Array Probe Level Data. Biostatistics 4, 249–264 (2003)

    Article  MATH  Google Scholar 

  10. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics, 59–69 (1982)

    Google Scholar 

  11. Fritzke, B.: A growing neural gas network learns topologies. Advances in Neural Information Processing Systems 7, 625–632 (1995)

    Google Scholar 

  12. Martinetz, T.: Competitive Hebbian learning rule forms perfectly topology preserving maps. In: ICANN 1993: International Conference on Artificial Neural Networks, pp. 427–434 (1993)

    Google Scholar 

  13. Martinetz, T., Schulten, K.: A neural-gas network learns topologies. In: Kohonen, T., et al. (eds.) Artificial Neural Networks, Amsterdam, pp. 397–402 (1991)

    Google Scholar 

  14. Brunelli, R.: Histogram Analysis for Image Retrieval. Pattern Recognition 34, 1625–1637 (2001)

    Article  MATH  Google Scholar 

  15. Gariepy, R., Pepe, W.D.: On the Level sets of a Distance Function in a Minkowski Space. Proceedings of the American Mathematical Society 31(1), 255–259 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2002)

    Google Scholar 

  17. Riverola, F., Díaz, F., Corchado, J.M.: Gene-CBR: a case-based reasoning tool for cancer diagnosis using microarray datasets. Computational Intelligence 22, 254–268 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Google Scholar 

  19. Saitou, N., Nie, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. 4, 406–425 (1987)

    Google Scholar 

  20. Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. The Principles and Practice of Numerical Classication. W.H. Freeman Company, San Francisco (1973)

    MATH  Google Scholar 

  21. Fix, E., Hodges, J.L.: Discriminatory analysis, nonparametric discrimination consistency properties, Technical Report 4, United States Air Force, Randolph Field, TX (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corchado, J.M., De Paz, J.F. (2008). Using CBR Systems for Leukemia Classification. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics