Craniofacial Superimposition Based on Genetic Algorithms and Fuzzy Location of Cephalometric Landmarks | SpringerLink
Skip to main content

Craniofacial Superimposition Based on Genetic Algorithms and Fuzzy Location of Cephalometric Landmarks

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

  • 1644 Accesses

Abstract

Craniofacial superimposition is the second stage of a complex forensic technique that aims to identify a missing person from a photograph (or video shot) and the skull found. This specific task is devoted to find the most appropriate pose of the skull to be projected onto the photograph. The process is guided by a number of landmarks identified both in the skull (craniometric landmarks) and in the photograph (cephalometric landmarks). In this contribution we extend our previous genetic algorithm-based approach to the problem by considering the uncertainty involved in the location of the cephalometric landmarks. This proposal is tested over two real cases solved by the Physical Anthropology lab at the University of Granada (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Iscan, M.Y.: Introduction to techniques for photographic comparison. In: Iscan, M.Y., Helmer, R. (eds.) Forensic Analysis of the Skull, pp. 57–90. Wiley, Chichester (1993)

    Google Scholar 

  2. Ballerini, L., Cordón, O., Damas, S., Santamaría, J.: Craniofacial superimposition in Forensic identification using genetic algorithms. Technical report ECSC AFE 2008-03. European Center for Soft Computing (2008)

    Google Scholar 

  3. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: Current framework and new trends. Fuzzy Sets and Systems 141(1), 5–31 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ballerini, L., Cordón, O., Damas, S., Santamaría, J., Alemán, I., Botella, M.: Identification by computer-aided photographic supra-projection: a survey. Technical report ECSC AFE 2007-04. European Center for Soft Computing (2007)

    Google Scholar 

  5. Nickerson, B.A., Fitzhorn, P.A., Koch, S.K., Charney, M.: A methodology for near-optimal computational superimposition of two-dimensional digital facial photographs and three-dimensional cranial surface meshes. Journal of Forensic Sciences 36(2), 480–500 (1991)

    Google Scholar 

  6. Blickle, T.: Tournament selection. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Hand-book of evolutionary computation, ch. 2.3. IOP Publishing Ltd/Oxford University Press (1997)

    Google Scholar 

  7. Eshelman, L.J.: Real-coded genetic algorithms and interval schemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms, vol. 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  8. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of evolutionary computation. IOP Publishing Ltd/Oxford University Press (1997)

    Google Scholar 

  9. Richtsmeier, J., Paik, C., Elfert, P., Cole, T.M., Dahlman, F.: Precision, repeatability and valida-tion of the localization of cranial landmarks using computed tomography scans. Cleft Palate Craniofac J. 32, 217–227 (1995)

    Article  Google Scholar 

  10. Sinha, P.: A symmetry perceiving adaptive neural network and facial image recognition. Forensic Science International 98(1-2), 67–89 (1998)

    Article  Google Scholar 

  11. Ghosh, A., Sinha, P.: An economized craniofacial identification system. Forensic Science International 117(1-2), 109–119 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ibáñez, O., Cordón, O., Damas, S., Santamaría, J. (2008). Craniofacial Superimposition Based on Genetic Algorithms and Fuzzy Location of Cephalometric Landmarks. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics