A Type-2 Fuzzy Set Recognition Algorithm for Artificial Immune Systems | SpringerLink
Skip to main content

A Type-2 Fuzzy Set Recognition Algorithm for Artificial Immune Systems

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

Abstract

In this paper, we suggest a flexible type-2 fuzzy set algorithm for analysing anomalous behavior trends of some system parameters. This algorithm can be implemented in a performance-based Artificial Immune System (AIS) and used as anomalous behavior recognition engine for a biological-inspired Intrusion Detection System (IDS). The suggested algorithm is based on the idea that real-world applications have the necessity of providing a strong, reliable discrimination between normal and abnormal behaviors but such discrimination is not always well-defined. This fact introduces many degrees of uncertainties in rule-based systems and convinced us to implement a type-2 fuzzy set algorithm that can easily manipulate and minimize the effect of uncertainties in our system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aickelin, U., Cayzer, S.: The Danger Theory and Its Application to Artificial Immune Systems. In: Proc. of 1st Int. Conf. on Artificial Immune Systems (2002)

    Google Scholar 

  2. Aickelin, U., Bentley, P., Cayzer, S., Kim, J., McLeod, J.: Danger Theory: The Link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Google Scholar 

  3. Balthrop, J., Forrest, S., Glickman, M.: Revisiting lisys: Parameters and normal behavior. In: Proc. Congress on Evolutionary Computation, pp. 1045–1050 (2002)

    Google Scholar 

  4. Dasgupta, D.: Immune-based intrusion detection system: A general framework. In: Proc. of the 22nd National Information Systems Security Conference (1999)

    Google Scholar 

  5. Dasgupta, D.: Advances in Artificial Immune Systems. IEEE Computational Intelligence Magazine (November 2006)

    Google Scholar 

  6. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for UNIX processes. In: Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy (1996)

    Google Scholar 

  7. Forrest, S., Hofmeyr, S., Somayaji, A.: Computer immunology. Communication of ACM 40(10), 88–96 (1997)

    Article  Google Scholar 

  8. Forrest, S., Glickman, M.R.: Revisiting LISYS: Parameters and Normal behavior. In: Proceedings of the Special Track on Artificial Immune Systems, Proceedings of the 2002 Congress on Evolutionary Computation (2002)

    Google Scholar 

  9. Hofmeyr, S., Somayaji, A., Forrest, S.: Intrusion Detection using Sequences of System Calls. Journal of Computer Security 6(3), 151–180 (1998)

    Google Scholar 

  10. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 8(4), 443–473 (2000)

    Article  Google Scholar 

  11. Hofmeyr, S.: An immunological model of distributed detection and its application to computer security. PhD thesis, University of New Mexico (1999)

    Google Scholar 

  12. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132, 195–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kim, J., Bentley, P.: The human Immune system and Network Intrusion Detection. In: Proceedings of 7th European Congress on Intelligent techniques Soft Computing, Aachan, Germany (1999)

    Google Scholar 

  14. Mendel, J.M.: Computing with Words and Its Relationships with Fuzzistics. Information Sciences 177, 988–1006 (2007)

    Article  MathSciNet  Google Scholar 

  15. Mendel, J.M., Bob John, R.I.: Footprint of uncertainty and its importance to type-2 fuzzy sets. In: Proc. 6th IASTED Int. Conf. Artificial Intelligence and Soft Computing, Banff, Canada, pp. 587–592 (July 2002)

    Google Scholar 

  16. Mendel, J.M., Bob John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2) (April 2002)

    Google Scholar 

  17. Mendel, J.M., Bob John, R.I., Liu, F.: Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Trans. Fuzzy Systems 14(6), 808–821 (2006)

    Article  Google Scholar 

  18. Mendel, J.M., Wu, H.: Centroid uncertainty bounds for interval type-2 fuzzy sets: forward and inverse problems. In: Proc. of IEEE Int’l. Conf. on Fuzzy Systems, Budapest, Hungary (July 2004)

    Google Scholar 

  19. Mizamoto, M., Tanaka, K.: Some properties of fuzzy set of type-2. Inform. Control 31, 312–340 (1976)

    Article  Google Scholar 

  20. Moore, E.R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  21. Pagnoni, A., Visconti, A.: An Innate Immune System for the Protection of Computer Networks. In: Baltes, B.R., et al. (eds.) Proceedings of the 4th International Symposium on Information and Communication Technologies (2005)

    Google Scholar 

  22. Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applications. Springer, New York (2003)

    MATH  Google Scholar 

  23. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: Alternative data models 1999. In: IEEE Symposium on security and Privacy (1999)

    Google Scholar 

  24. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10, 622–639 (2002)

    Article  Google Scholar 

  25. Zadeh, L.A.: The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-I. Information Science 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Visconti, A., Tahayori, H. (2008). A Type-2 Fuzzy Set Recognition Algorithm for Artificial Immune Systems. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics