Enhanced Cooperative Co-evolution Genetic Algorithm for Rule-Based Pattern Classification | SpringerLink
Skip to main content

Enhanced Cooperative Co-evolution Genetic Algorithm for Rule-Based Pattern Classification

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5271))

Included in the following conference series:

Abstract

Genetic algorithms (GAs) have been widely used as soft computing techniques in various application domains, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, an enhanced cooperative co-evolution genetic algorithm (ECCGA) is proposed for rule-based pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Massachusetts (1989)

    MATH  Google Scholar 

  2. Fidelis, M.V., Lopes, H.S., Freitas, A.A.: Discovering comprehensible classification rules with a genetic algorithm. In: Proc. of Congress on Evolutionary Computation, vol. 1, pp. 805–810 (2000)

    Google Scholar 

  3. Merelo, J.J., Prieto, A., Moran, F.: Optimization of classifiers using genetic algorithms. In: Patel, M., Honavar, V., Balakrishnan, K. (eds.) Advances in the Evolutionary Synthesis of Intelligent Agents, pp. 91–108. MIT press, Mass (2001)

    Google Scholar 

  4. Lanzi, P.L., Stolzmann, W., Wilson, S.W.: Learning Classifier Systems: from Foundations to Applications. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, Springer, Heidelberg (2000)

    Google Scholar 

  5. Holland, J.H.: Adaptation in Nature and Artificial Systems. Univ. of Michigan Press (1975)

    Google Scholar 

  6. Harik, G.R., Goldberg, D.E.: Learning linkage through probabilistic expression. Computer Methods in Applied Mechanics and Engineering 186, 295–310 (2000)

    Article  MATH  Google Scholar 

  7. Chen, Q., Guan, S.-U.: Incremental multiple objective genetic algorithms. IEEE Trans. on Systems, Man, and Cybernetics, Part B 34(3), 1325–1334 (2004)

    Article  MathSciNet  Google Scholar 

  8. DeJong, K.A., Potter, M.A.: Evolving complex structure via cooperative coevolution. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, CA (1995)

    Google Scholar 

  9. García-Pedrajas, N., Hervás-Martínez, C., Muñoz-Pérez, J.: Multi-objective cooperative coevolution of artificial neural networks. Neural Networks 15(10), 1259–1278 (2002)

    Article  Google Scholar 

  10. Potter, M.A., DeJong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Article  Google Scholar 

  11. Guan, S.-U., Zhu, F.: An incremental approach to genetic-algorithms-based classification. IEEE Trans. on Systems, Man and Cybernetics, Part B 35(2), 227–239 (2005)

    Article  Google Scholar 

  12. Zhu, F., Guan, S.-U.: Ordered incremental training with genetic algorithms. International Journal of Intelligent Systems 19(12), 1239–1256 (2004)

    Article  MATH  Google Scholar 

  13. Potter, M.A., DeJong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

    Google Scholar 

  14. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Department of Information and Computer Science. University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, F., Guan, SU. (2008). Enhanced Cooperative Co-evolution Genetic Algorithm for Rule-Based Pattern Classification. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87656-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87655-7

  • Online ISBN: 978-3-540-87656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics