Abstract
Genetic algorithms (GAs) have been widely used as soft computing techniques in various application domains, while cooperative co-evolution algorithms were proposed in the literature to improve the performance of basic GAs. In this paper, an enhanced cooperative co-evolution genetic algorithm (ECCGA) is proposed for rule-based pattern classification. Concurrent local and global evolution and conclusive global evolution are proposed to improve further the classification performance. Different approaches of ECCGA are evaluated on benchmark classification data sets, and the results show that ECCGA can achieve better performance than the cooperative co-evolution genetic algorithm and normal GA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Massachusetts (1989)
Fidelis, M.V., Lopes, H.S., Freitas, A.A.: Discovering comprehensible classification rules with a genetic algorithm. In: Proc. of Congress on Evolutionary Computation, vol. 1, pp. 805–810 (2000)
Merelo, J.J., Prieto, A., Moran, F.: Optimization of classifiers using genetic algorithms. In: Patel, M., Honavar, V., Balakrishnan, K. (eds.) Advances in the Evolutionary Synthesis of Intelligent Agents, pp. 91–108. MIT press, Mass (2001)
Lanzi, P.L., Stolzmann, W., Wilson, S.W.: Learning Classifier Systems: from Foundations to Applications. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, Springer, Heidelberg (2000)
Holland, J.H.: Adaptation in Nature and Artificial Systems. Univ. of Michigan Press (1975)
Harik, G.R., Goldberg, D.E.: Learning linkage through probabilistic expression. Computer Methods in Applied Mechanics and Engineering 186, 295–310 (2000)
Chen, Q., Guan, S.-U.: Incremental multiple objective genetic algorithms. IEEE Trans. on Systems, Man, and Cybernetics, Part B 34(3), 1325–1334 (2004)
DeJong, K.A., Potter, M.A.: Evolving complex structure via cooperative coevolution. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, CA (1995)
García-Pedrajas, N., Hervás-Martínez, C., Muñoz-Pérez, J.: Multi-objective cooperative coevolution of artificial neural networks. Neural Networks 15(10), 1259–1278 (2002)
Potter, M.A., DeJong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)
Guan, S.-U., Zhu, F.: An incremental approach to genetic-algorithms-based classification. IEEE Trans. on Systems, Man and Cybernetics, Part B 35(2), 227–239 (2005)
Zhu, F., Guan, S.-U.: Ordered incremental training with genetic algorithms. International Journal of Intelligent Systems 19(12), 1239–1256 (2004)
Potter, M.A., DeJong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)
Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. Department of Information and Computer Science. University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhu, F., Guan, SU. (2008). Enhanced Cooperative Co-evolution Genetic Algorithm for Rule-Based Pattern Classification. In: Corchado, E., Abraham, A., Pedrycz, W. (eds) Hybrid Artificial Intelligence Systems. HAIS 2008. Lecture Notes in Computer Science(), vol 5271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87656-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-87656-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87655-7
Online ISBN: 978-3-540-87656-4
eBook Packages: Computer ScienceComputer Science (R0)