Abstract
Discriminant functions calculated by Support Vector Machines (SVMs) define in a computationally efficient way projections of high-dimensional data on a direction perpendicular to the discriminating hyperplane. These projections may be used to estimate and display posterior probability densities
. Additional directions for visualization and dimensionality reduction are created by repeating the linear discrimination process in a space orthogonal to already defined projections. This process allows for an efficient reduction of dimensionality and visualization of data, at the same time improving classification accuracy of a single discriminant function. Visualization of real and artificial data shows that transformed data may not be separable and thus linear discrimination will completely fail, but the nearest neighbor or rule-based methods in the reduced space may still provide simple and accurate solutions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
Pȩkalska, E., Duin, R.: The dissimilarity representation for pattern recognition: foundations and applications. World Scientific, Singapore (2005)
Duch, W.: Visualization of hidden node activity in neural networks: I. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 38–43. Springer, Heidelberg (2004)
Duch, W.: Coloring black boxes: visualization of neural network decisions. In: Int. Joint Conf. on Neural Networks, Portland, vol. I, pp. 1735–1740. IEEE Press, Los Alamitos (2003)
Webb, A.: Statistical Pattern Recognition. J. Wiley & Sons, Chichester (2002)
Naud, A.: An Accurate MDS-Based Algorithm for the Visualization of Large Multidimensional Datasets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 643–652. Springer, Heidelberg (2006)
Schölkopf, B., Smola, A.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
Merz, C., Murphy, P.: UCI repository of machine learning databases (2007)
Golub, T.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)
Wolberg, W.H., Mangasarian, O.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In: PNAS, vol. 87, pp. 9193–9196 (1990)
Grochowski, M., Duch, W.: Learning highly non-separable Boolean functions using Constructive Feedforward Neural Network. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 180–189. Springer, Heidelberg (2007)
Duch, W.: k-separability. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)
van der Maaten, L., Postma, E., van den Herik, H.: Dimensionality reduction: A comparative review (in print, 2008)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)
Duch, W., Blachnik, M.: Fuzzy rule-based systems derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)
Duch, W., Grudziński, K.: Meta-learning via search combined with parameter optimization. In: Rutkowski, L., Kacprzyk, J. (eds.) Advances in Soft Computing, pp. 13–22. Physica Verlag, Springer, New York (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maszczyk, T., Duch, W. (2008). Support Vector Machines for Visualization and Dimensionality Reduction. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87536-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-540-87536-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87535-2
Online ISBN: 978-3-540-87536-9
eBook Packages: Computer ScienceComputer Science (R0)