On Rank and Kernel of ℤ4-Linear Codes | SpringerLink
Skip to main content

On Rank and Kernel of ℤ4-Linear Codes

  • Conference paper
Coding Theory and Applications

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5228))

Abstract

A code \({\cal C}\) is a quaternary linear code if \({\cal C}\) is a subgroup of ℤ . In this paper, the rank and dimension of the kernel for ℤ4-linear codes, which are the corresponding binary codes of quaternary linear codes, are studied. The possible values of these two parameters for ℤ4-linear codes, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a ℤ4-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a ℤ4-linear code with dimension of the kernel k is given.

This work was supported in part by the Spanish MEC and the European FEDER under Grants MTM2006-03250 and TSI2006-14005-C02-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer, H., Ganter, B., Hergert, F.: Algebraic techniques for nonlinear codes. Combinatorica 3, 21–33 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borges, J., Rifà, J.: A characterization of 1-perfect additive codes. IEEE Trans. Inform. Theory 45(5), 1688–1697 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borges, J., Fernández, C., Phelps, K.T.: Quaternary Reed-Muller codes. IEEE Trans. Inform. Theory 51(7), 2686–2691 (2005)

    Article  MathSciNet  Google Scholar 

  4. Borges, J., Phelps, K.T., Rifà, J., Zinoviev, V.A.: On ℤ4-linear Preparata-like and Kerdock-like codes. IEEE Trans. Inform. Theory 49(11), 2834–2843 (2003)

    Article  MathSciNet  Google Scholar 

  5. Borges, J., Phelps, K.T., Rifà, J.: The rank and kernel of extended 1-perfect ℤ4-linear and additive non-ℤ4-linear codes. IEEE Trans. Inform. Theory 49(8), 2028–2034 (2003)

    Article  MathSciNet  Google Scholar 

  6. Borges, J., Fernández, C., Pujol, J., Rifà, J., Villanueva, M.: ℤ4-linear codes: generator matrices and duality. IEEE Trans. on Inform. Theory (submitted, 2007) arXiv:0710.1149

    Google Scholar 

  7. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10 (1973)

    Google Scholar 

  8. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The ℤ4-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. Krotov, D.S.: ℤ4-linear Hadamard and extended perfect codes. In: International Workshop on Coding and Cryptography, Paris, France, January 8-12, 2001, pp. 329–334 (2001)

    Google Scholar 

  11. MacWillams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    Google Scholar 

  12. Phelps, K.T., LeVan, M.: Kernels of nonlinear Hamming codes. Designs, Codes and Cryptography 6(3), 247–257 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Phelps, K.T., Rifà, J.: On binary 1-perfect additive codes: some structural properties. IEEE Trans. Inform. Theory 48(9), 2587–2592 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Phelps, K.T., Rifà, J., Villanueva, M.: On the additive ℤ4-linear and non-ℤ4-linear Hadamard codes. Rank and Kernel. IEEE Trans. Inform. Theory 52(1), 316–319 (2005)

    Article  Google Scholar 

  15. Pujol, J., Rifà, J.: Translation invariant propelinear codes. IEEE Trans. Inform. Theory 43, 590–598 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wan, Z.-X.: Quaternary Codes. World Scientific, Singapore (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ángela Barbero

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández-Córdoba, C., Pujol, J., Villanueva, M. (2008). On Rank and Kernel of ℤ4-Linear Codes. In: Barbero, Á. (eds) Coding Theory and Applications. Lecture Notes in Computer Science, vol 5228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87448-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87448-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87447-8

  • Online ISBN: 978-3-540-87448-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics