Abstract
A code \({\cal C}\) is a quaternary linear code if \({\cal C}\) is a subgroup of ℤ . In this paper, the rank and dimension of the kernel for ℤ4-linear codes, which are the corresponding binary codes of quaternary linear codes, are studied. The possible values of these two parameters for ℤ4-linear codes, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a ℤ4-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a ℤ4-linear code with dimension of the kernel k is given.
This work was supported in part by the Spanish MEC and the European FEDER under Grants MTM2006-03250 and TSI2006-14005-C02-01.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bauer, H., Ganter, B., Hergert, F.: Algebraic techniques for nonlinear codes. Combinatorica 3, 21–33 (1983)
Borges, J., Rifà, J.: A characterization of 1-perfect additive codes. IEEE Trans. Inform. Theory 45(5), 1688–1697 (1999)
Borges, J., Fernández, C., Phelps, K.T.: Quaternary Reed-Muller codes. IEEE Trans. Inform. Theory 51(7), 2686–2691 (2005)
Borges, J., Phelps, K.T., Rifà, J., Zinoviev, V.A.: On ℤ4-linear Preparata-like and Kerdock-like codes. IEEE Trans. Inform. Theory 49(11), 2834–2843 (2003)
Borges, J., Phelps, K.T., Rifà, J.: The rank and kernel of extended 1-perfect ℤ4-linear and additive non-ℤ4-linear codes. IEEE Trans. Inform. Theory 49(8), 2028–2034 (2003)
Borges, J., Fernández, C., Pujol, J., Rifà, J., Villanueva, M.: ℤ4-linear codes: generator matrices and duality. IEEE Trans. on Inform. Theory (submitted, 2007) arXiv:0710.1149
Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10 (1973)
Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The ℤ4-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Krotov, D.S.: ℤ4-linear Hadamard and extended perfect codes. In: International Workshop on Coding and Cryptography, Paris, France, January 8-12, 2001, pp. 329–334 (2001)
MacWillams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)
Phelps, K.T., LeVan, M.: Kernels of nonlinear Hamming codes. Designs, Codes and Cryptography 6(3), 247–257 (1995)
Phelps, K.T., Rifà, J.: On binary 1-perfect additive codes: some structural properties. IEEE Trans. Inform. Theory 48(9), 2587–2592 (2002)
Phelps, K.T., Rifà, J., Villanueva, M.: On the additive ℤ4-linear and non-ℤ4-linear Hadamard codes. Rank and Kernel. IEEE Trans. Inform. Theory 52(1), 316–319 (2005)
Pujol, J., Rifà, J.: Translation invariant propelinear codes. IEEE Trans. Inform. Theory 43, 590–598 (1997)
Wan, Z.-X.: Quaternary Codes. World Scientific, Singapore (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernández-Córdoba, C., Pujol, J., Villanueva, M. (2008). On Rank and Kernel of ℤ4-Linear Codes. In: Barbero, Á. (eds) Coding Theory and Applications. Lecture Notes in Computer Science, vol 5228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87448-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-87448-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87447-8
Online ISBN: 978-3-540-87448-5
eBook Packages: Computer ScienceComputer Science (R0)