Evolutionary Optimization with Dynamic Fidelity Computational Models | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

Abstract

In this paper, we propose an evolutionary framework for model fidelity control that decides, at runtime, the appropriate fidelity level of the computational model, which is deemed to be computationally less expensive, to be used in place of the exact analysis code as the search progresses. Empirical study on an aerodynamic airfoil design problem based on a Memetic Algorithm with Dynamic Fidelity Model (MA-DFM) demonstrates that improved quality solution and efficiency are obtained over existing evolutionary schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 19447
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hutchinson, M.G., Unger, E.R., Mason, W.H., Grossman, B., Haftka, R.T.: Variable-complexity Aerodynamic Optimization of a High Speed Civil Transport Wing. J. Aircraft 31, 110–116 (1994)

    Article  Google Scholar 

  2. Mason, W.H., Knill, D.L., Giunta, A.A., Grossman, B., Watson, L.T., Haftka, R.T.: Getting the Full Benefits of CFD in Conceptual Design. In: 16th AIAA Applied Aerodynamics Conference, Albuquerque, AIAA-1998-2513 (1998)

    Google Scholar 

  3. Raymer, D.P.: Aircraft Design: A Conceptual Approach, 3rd edn., Reston, Virginia. Educational Series. AIAA (1999)

    Google Scholar 

  4. Ray, T., Tsai, H., Tan, C.: Effects of Solver Fidelity on a Parallel Search Algorithm’s Performance for Airfoil Shape Optimization Problems. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference, 2002, Atlanta, Georgia (2002)

    Google Scholar 

  5. Keane, A.J.: Wing Optimization Using Design of Experiment, Response Surface, and Data Fusion Methods. Journal of Aircraft 40(4), 741–750 (2003)

    Article  MathSciNet  Google Scholar 

  6. Wu, H.Y., Yang, S., Liu, F., Tsai, H.M.: Comparison of Three Geometric Representations of Airfoils for Aerodynamic Optimization. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida (2003)

    Google Scholar 

  7. El-Beltagy, M.A., Keane, A.J.: A Comparison of Various Optimization Algorithms on a Multilevel Problem. Engineering Applications of Artificial Intelligence 12(5), 639–654 (1999)

    Article  Google Scholar 

  8. Eby, D., Averill, R.C., Punch III, W.F., Goodman, E.D.: Evaluation of Injection Island GA Performance on Flywheel Design Optimization. In: Parmee, I.C. (ed.) Adaptive Computing in Design and manufacture. Springer, Heidelberg (1998)

    Google Scholar 

  9. Pantoja, M.F., Meincke, P., Bretones, A.R.: A hybrid genetic-algorithm space-mapping tool for the optimization of antennas. IEEE Transactions on Antennas and Propagation 55(3) Part 1, 777–781 (2007)

    Article  Google Scholar 

  10. Kampolis, I.C., Zymaris, A.S., Asouti, V.G., Giannakoglou, K.C.: Multilevel optimization strategies based on metamodel-assisted evolutionary algorithms, for computationally expensive problems. In: IEEE Congress on Evolutionary Computation, pp. 4116–4123 (2007)

    Google Scholar 

  11. Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: An Informed Operator Based Genetic Algorithm for Tuning the Reaction Rate Parameters of Chemical Kinetics Mechanisms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 945–956. Springer, Heidelberg (2004)

    Google Scholar 

  12. Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Response Surface Model Evolution. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, June 23-26 (2003)

    Google Scholar 

  13. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A Survey. In: IEEE Conference on Evolutionary Computation (1997)

    Google Scholar 

  14. Jin, Y., Huesken, M., Sendhoff, B.: Quality Measures for Approximate Models in Evolutionary Computation. In: Proc. GECCO Workshops: Workshop on Adaptation, Learning and Approximation in Evolutionary Computation, Chicago, Illinois, USA, pp. 170–174 (2003)

    Google Scholar 

  15. Gräning, L., Jin, Y., Sendhoff, B.: Individual-based Management of Meta-models for Evolutionary Optimization with Applications to Three-dimensional Blade Optimization. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, pp. 225–250. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B.: A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Evolutionary Computation. In: Proc. Genetic and Evolutionary Computation Conference, London, UK, pp. 1288–1295 (2007)

    Google Scholar 

  17. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling. Amer. Instit. Aeronaut. Astronaut. J. 41(4), 687–696 (2003)

    Google Scholar 

  18. Ong, Y.S., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithm. IEEE Trans. Evolut. Comput. 8(2), 99–110 (2004)

    Article  Google Scholar 

  19. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of Adaptive Memetic Algorithms: A Comparative Study. IEEE Trans. Syst. Man Cybernet. - Part B 36(1), 141–152 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lim, D., Ong, YS., Jin, Y., Sendhoff, B. (2008). Evolutionary Optimization with Dynamic Fidelity Computational Models. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics