Abstract
In this paper, we propose an evolutionary framework for model fidelity control that decides, at runtime, the appropriate fidelity level of the computational model, which is deemed to be computationally less expensive, to be used in place of the exact analysis code as the search progresses. Empirical study on an aerodynamic airfoil design problem based on a Memetic Algorithm with Dynamic Fidelity Model (MA-DFM) demonstrates that improved quality solution and efficiency are obtained over existing evolutionary schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hutchinson, M.G., Unger, E.R., Mason, W.H., Grossman, B., Haftka, R.T.: Variable-complexity Aerodynamic Optimization of a High Speed Civil Transport Wing. J. Aircraft 31, 110–116 (1994)
Mason, W.H., Knill, D.L., Giunta, A.A., Grossman, B., Watson, L.T., Haftka, R.T.: Getting the Full Benefits of CFD in Conceptual Design. In: 16th AIAA Applied Aerodynamics Conference, Albuquerque, AIAA-1998-2513 (1998)
Raymer, D.P.: Aircraft Design: A Conceptual Approach, 3rd edn., Reston, Virginia. Educational Series. AIAA (1999)
Ray, T., Tsai, H., Tan, C.: Effects of Solver Fidelity on a Parallel Search Algorithm’s Performance for Airfoil Shape Optimization Problems. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization Conference, 2002, Atlanta, Georgia (2002)
Keane, A.J.: Wing Optimization Using Design of Experiment, Response Surface, and Data Fusion Methods. Journal of Aircraft 40(4), 741–750 (2003)
Wu, H.Y., Yang, S., Liu, F., Tsai, H.M.: Comparison of Three Geometric Representations of Airfoils for Aerodynamic Optimization. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida (2003)
El-Beltagy, M.A., Keane, A.J.: A Comparison of Various Optimization Algorithms on a Multilevel Problem. Engineering Applications of Artificial Intelligence 12(5), 639–654 (1999)
Eby, D., Averill, R.C., Punch III, W.F., Goodman, E.D.: Evaluation of Injection Island GA Performance on Flywheel Design Optimization. In: Parmee, I.C. (ed.) Adaptive Computing in Design and manufacture. Springer, Heidelberg (1998)
Pantoja, M.F., Meincke, P., Bretones, A.R.: A hybrid genetic-algorithm space-mapping tool for the optimization of antennas. IEEE Transactions on Antennas and Propagation 55(3) Part 1, 777–781 (2007)
Kampolis, I.C., Zymaris, A.S., Asouti, V.G., Giannakoglou, K.C.: Multilevel optimization strategies based on metamodel-assisted evolutionary algorithms, for computationally expensive problems. In: IEEE Congress on Evolutionary Computation, pp. 4116–4123 (2007)
Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: An Informed Operator Based Genetic Algorithm for Tuning the Reaction Rate Parameters of Chemical Kinetics Mechanisms. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 945–956. Springer, Heidelberg (2004)
Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Response Surface Model Evolution. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, June 23-26 (2003)
Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A Survey. In: IEEE Conference on Evolutionary Computation (1997)
Jin, Y., Huesken, M., Sendhoff, B.: Quality Measures for Approximate Models in Evolutionary Computation. In: Proc. GECCO Workshops: Workshop on Adaptation, Learning and Approximation in Evolutionary Computation, Chicago, Illinois, USA, pp. 170–174 (2003)
Gräning, L., Jin, Y., Sendhoff, B.: Individual-based Management of Meta-models for Evolutionary Optimization with Applications to Three-dimensional Blade Optimization. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, pp. 225–250. Springer, Heidelberg (2007)
Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B.: A Study on Metamodeling Techniques, Ensembles, and Multi-Surrogates in Evolutionary Computation. In: Proc. Genetic and Evolutionary Computation Conference, London, UK, pp. 1288–1295 (2007)
Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling. Amer. Instit. Aeronaut. Astronaut. J. 41(4), 687–696 (2003)
Ong, Y.S., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithm. IEEE Trans. Evolut. Comput. 8(2), 99–110 (2004)
Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of Adaptive Memetic Algorithms: A Comparative Study. IEEE Trans. Syst. Man Cybernet. - Part B 36(1), 141–152 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lim, D., Ong, YS., Jin, Y., Sendhoff, B. (2008). Evolutionary Optimization with Dynamic Fidelity Computational Models. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-85984-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85983-3
Online ISBN: 978-3-540-85984-0
eBook Packages: Computer ScienceComputer Science (R0)