An SVM-Based Algorithm for Classifying Promoter-Associated CpG Islands in the Human and Mouse Genomes | SpringerLink
Skip to main content

An SVM-Based Algorithm for Classifying Promoter-Associated CpG Islands in the Human and Mouse Genomes

  • Conference paper
Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence (ICIC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5227))

Included in the following conference series:

  • 2186 Accesses

Abstract

CpG islands (CGIs) are clusters of CpG dinucleotides in GC-rich regions and represent an important gene feature of mammalian genomes. Several algorithms have been developed to identify CGIs. Here we applied Support Vector Machine (SVM), a machine learning approach, to classify CGIs that are associated with the promoter regions of genes. We demonstrated that our SVM-based algorithm had much higher sensitivity and specificity in classifying promoter-associated CGIs than other algorithms, and had high reliability. The advantages of SVM in our method and future improvements were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lander, E.S., et al.: Initial Sequencing and Analysis of the Human Genome. Nature 409, 860–921 (2001)

    Article  Google Scholar 

  2. Jiang, C., Han, L., Su, B., Li, W.H., Zhao, Z.: Features and Trend of Loss of Promoter-associated CpG Islands in the Human and Mouse Genomes. Mol. Biol. Evol. 24, 1991–2000 (2007)

    Article  Google Scholar 

  3. Ioshikhes, I.P., Zhang, M.Q.: Large-scale Human Promoter Mapping Using CpG Islands. Nat. Genet. 26, 61–63 (2000)

    Article  Google Scholar 

  4. Gardiner-Garden, M., Frommer, M.: CpG Islands in Vertebrate Genomes. J. Mol. Biol. 196, 261–282 (1987)

    Article  Google Scholar 

  5. Takai, D., Jones, P.A.: Comprehensive Analysis of CpG Islands in Human Chromosomes 21 and 22. Proc. Natl. Acad. Sci. U.S.A. 99, 3740–3745 (2002)

    Article  Google Scholar 

  6. Ponger, L., Mouchiroud, D.: CpGProD: Identifying CpG Islands Associated with Transcription Start Sites in Large Genomic Mammalian Sequences. Bioinformatics 18, 631–633 (2002)

    Article  Google Scholar 

  7. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  8. Brown, M.P., et al.: Knowledge-based Analysis of Microarray Gene Expression Data by Using Support Vector Machines. Proc. Natl. Acad. Sci. U.S.A. 97, 262–267 (2000)

    Article  Google Scholar 

  9. Ramaswamy, S., et al.: Multiclass Cancer Diagnosis Using Tumor Gene Expression Signatures. Proc. Natl. Acad. Sci. U.S.A. 98, 15149–15154 (2001)

    Article  Google Scholar 

  10. Bhasin, M., Zhang, H., Reinherz, E.L., Reche, P.A.: Prediction of Methylated CpGs in DNA Sequences Using a Support Vector Machine. FEBS Lett. 579, 4302–4308 (2005)

    Article  Google Scholar 

  11. Fang, F., Fan, S., Zhang, X., Zhang, M.Q.: Predicting Methylation Status of CpG Islands in the Human Brain. Bioinformatics 22, 2204–2209 (2006)

    Article  Google Scholar 

  12. Jiang, C., Zhao, Z.: Mutational Spectrum in the Recent Human Genome Inferred by Single Nucleotide Polymorphisms. Genomics 88, 527–534 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Donald C. Wunsch II Daniel S. Levine Kang-Hyun Jo

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L., Yang, R., Su, B., Zhao, Z. (2008). An SVM-Based Algorithm for Classifying Promoter-Associated CpG Islands in the Human and Mouse Genomes. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2008. Lecture Notes in Computer Science(), vol 5227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85984-0_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85984-0_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85983-3

  • Online ISBN: 978-3-540-85984-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics