Abstract
This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e = 216 + 1, the proposal with a 1024-bit Montgomery multiplier is 1.4 times faster than the best previous technique.
Chapter PDF
Similar content being viewed by others
References
Koç., Ç.K.: Montgomery Reduction with Even Modulus. IEE Proceedings - Computers and Digital Techniques 141(5), 314–316 (1994)
Chevallier-Mames, B., Joye, M., Paillier, P.: Faster Double-Size Modular Multiplication From Euclidean Multipliers. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 214–227. Springer, Heidelberg (2003)
European Network of Excellence in Cryptology (ECRYPT). ECRYPT Yearly Report on Algorithms and Keysizes (2006), http://www.ecrypt.eu.org/documents/D.SPA.21-1.1.pdf
EMV. EMV Issuer and Application Security Guidelines, Version 2.1 (2007), http://www.emvco.com/specifications.asp?show=4
Fischer, W., Seifert, J.-P.: Increasing the Bitlength of Crypto-coprocessors. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 71–81. Springer, Heidelberg (2003)
Kaihara, M.E., Takagi, N.: Bipartite modular multiplication. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 201–210. Springer, Heidelberg (2005)
Arjen, K.: Lenstra. Key Lengths (2004), http://cm.bell-labs.com/who/akl/key_lengths.pdf
Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)
National Institute of Standards ant Technology. NIST Special Publication 800-57 Recommendation for KeyManagement Part 1: General (Revised) (2007), http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
Naccache, D., M’Raïhi, D.: Arithmetic co-processors for public-key cryptography: The state of the art. In: CARDIS, pp. 18–20 (1996)
Paillier, P.: Low-Cost Double-Size Modular Exponentiation or How to Stretch Your Cryptoprocessor. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 223–234. Springer, Heidelberg (1999)
Rivest, R.L., Shamir, A., Adelman, L.M.: A Method for Obtaining Digital Signatures and Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
RSA Laboratories. The Secure Use of RSA. CryptoBytes 1(3) (1995), ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto1n3.pdf
Yoshino, M., Okeya, K., Vuillaume, C.: Unbridle the Bit-Length of a Crypto-Coprocessor with Montgomery Multiplication. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 188–202. Springer, Heidelberg (2007)
Yoshino, M., Okeya, K., Vuillaume, C.: Double-Size Bipartite Modular Multiplication. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 230–244. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 IFIP International Federation for Information Processing
About this paper
Cite this paper
Yoshino, M., Okeya, K., Vuillaume, C. (2008). A Black Hen Lays White Eggs. In: Grimaud, G., Standaert, FX. (eds) Smart Card Research and Advanced Applications. CARDIS 2008. Lecture Notes in Computer Science, vol 5189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85893-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-85893-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85892-8
Online ISBN: 978-3-540-85893-5
eBook Packages: Computer ScienceComputer Science (R0)