High-Level Expectations for Low-Level Image Processing | SpringerLink
Skip to main content

High-Level Expectations for Low-Level Image Processing

  • Conference paper
KI 2008: Advances in Artificial Intelligence (KI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5243))

Included in the following conference series:

Abstract

Scene interpretation systems are often conceived as extensions of low-level image analysis with bottom-up processing for high-level interpretations. In this contribution we show how a generic high-level interpretation system can generate hypotheses and initiate feedback in terms of top-down controlled low-level image analysis. Experimental results are reported about the recognition of structures in building facades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arens, M., Ottlik, A., Nagel, H.-H.: Using Behavioral Knowledge for Situated Prediction of Movements. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 141–155. Springer, Heidelberg (2004)

    Google Scholar 

  2. Borg, M., Thirde, D., Ferryman, J., Fusier, F., Valentin, V., Bremond, F., Thonnat, M.: A Real-Time Scene Understanding System for Airport Apron Monitoring. In: Proc. of IEEE International Conference on Computer Vision Systems ICVS 2006 (2006)

    Google Scholar 

  3. Coradeschi, S., Saffiotti, A.: An Introduction to the Anchoring Problem. Robotics and Autonomous Systems 43(2-3), 85–96 (2003)

    Article  Google Scholar 

  4. Dickmanns, E.: Expectation-based Dynamic Scene Understanding. In: Blake, A., Yuille, A. (eds.) Active Vision (1993)

    Google Scholar 

  5. Georis, B., Mazière, M., Brémond, F., Thonnat, M.: Evaluation and Knowledge Representation Formalisms to Improve Video Understanding. In: Proc. of IEEE International Conference on Computer Vision Systems ICVS 2006 (2006)

    Google Scholar 

  6. Gerber, R., Nagel, H.-H.: Occurrence Extraction from Image Sequences of Road Traffic Scenes. In: van Gool, L., Schiele, B. (eds.) Proceedings Workshop on Cognitive Vision, ETH Zurich, Switzerland, pp. 1–8 (2002)

    Google Scholar 

  7. Gong, S., Buxton, H.: Understanding Visual Behaviour. Image and Vision Computing 20(12), 825–826 (2002)

    Article  Google Scholar 

  8. Hartz, J., Neumann, B.: Learning a knowledge base of ontological concepts for high-level scene interpretation. In: International Conference on Machine Learning and Applications, Cincinnati (Ohio, USA) (December 2007)

    Google Scholar 

  9. Hotz, L., Neumann, B.: Scene Interpretation as a Configuration Task. Künstliche Intelligenz 3, 59–65 (2005)

    Google Scholar 

  10. Howarth, R.J., Buxton, H.: Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing 18(2), 105–135 (2000)

    Article  Google Scholar 

  11. Kanade, T.: Region Segmentation: Signal vs. Semantics. In: Proc. International Joint Conference on Pattern Recognition (IJCPR 1978), Kyoto, Japan (1978)

    Google Scholar 

  12. Mohnhaupt, M., Neumann, B.: On the Use of Motion Concepts for Top-Down Control in Traffic Scenes. In: Proc. ECCV-1990, pp. 598–600. Springer, Heidelberg (1990)

    Google Scholar 

  13. Nagel, H.-H.: Natural Language Description of Image Sequences as a Form of Knowledge Representation. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 45–60. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Neumann, B., Möller, R.: On Scene Interpretation with Description Logics. In: Christensen, H.I., Nagel, H.-H. (eds.) Cognitive Vision Systems. LNCS, vol. 3948, pp. 247–275. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Neumann, B., Weiss, T.: Navigating through Logic-based Scene Models for High-level Scene Interpretations. In: 3rd International Conference on Computer Vision Systems - ICVS 2003, pp. 212–222. Springer, Heidelberg (2003)

    Google Scholar 

  16. Russel, S., Norvig, P.: Artificial Intelligence - A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  17. Sage, K., Howell, J., Buxton, H.: Recognition of Action, Activity and Behaviour in the ActIPret Project. Künstliche Intelligenz 3, 30–33 (2005)

    Google Scholar 

  18. Tenenbaum, J.M., Barrow, H.G.: Experiments in Interpretation Guided Segmentation. Artificial Intelligence Journal 8(3), 241–274 (1977)

    Article  Google Scholar 

  19. Vincze, M., Ponweiser, W., Zillich, M.: Contextual Coordination in a Cognitive Vision System for Symbolic Activity Interpretation. In: Proc. of IEEE International Conference on Computer Vision Systems ICVS 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas R. Dengel Karsten Berns Thomas M. Breuel Frank Bomarius Thomas R. Roth-Berghofer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hotz, L., Neumann, B., Terzic, K. (2008). High-Level Expectations for Low-Level Image Processing. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds) KI 2008: Advances in Artificial Intelligence. KI 2008. Lecture Notes in Computer Science(), vol 5243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85845-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85845-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85844-7

  • Online ISBN: 978-3-540-85845-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics