Generalized Extreme Value for Smooth Component Analysis in Prediction Improvement | SpringerLink
Skip to main content

Generalized Extreme Value for Smooth Component Analysis in Prediction Improvement

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2008)

Abstract

In this paper we propose a new preprocessing method for smooth component analysis (SmCA). The smoothness measure used in SmCA depends on the signal extreme values directly. We propose the min/max transformation based on the extreme value distribution providing the more realistic and useful signal characteristic in terms of the smoothness. The full methodology is applied as an ensemble method for the energy load prediction improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. John Wiley, Chichester (2002)

    Google Scholar 

  3. Cichocki, A., Żurada, J.M.: Blind Signal Separation and Extraction: Recent Trends, Future Perspectives, and Applications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 30–37. Springer, Heidelberg (2004)

    Google Scholar 

  4. Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. John Wiley and Sons, Chichester (2000)

    MATH  Google Scholar 

  5. Haykin, S.: Adaptive filter theory, 3rd edn. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley, Chichester (2001)

    Google Scholar 

  7. Johnson, N.L., Kotz, S., Kemp, A.W.: Univariate Discrete Distributions, 2nd edn. John Wiley and Sons, Chichester (1992)

    MATH  Google Scholar 

  8. Lendasse, A., Cottrell, M., Wertz, V., Verdleysen, M.: Prediction of Electric Load using Kohonen Maps – Application to the Polish Electricity Consumption. In: Proc. Am. Control Conf., Anchorage AK, pp. 3684–3689 (2002)

    Google Scholar 

  9. Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distributions and Applications. John Wiley &Son, Chichester (1995)

    Google Scholar 

  10. Samorodnitskij, G., Taqqu, M.: Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, NY (1994)

    Google Scholar 

  11. Scales, L.E.: Introduction to Non-Linear Optimization. Springer, New York (1985)

    Google Scholar 

  12. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Model Improvement by the Statistical Decomposition. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 1199–1204. Springer, Heidelberg (2004)

    Google Scholar 

  13. Szupiluk, R., Wojewnik, P., Zabkowski, T.: Smooth Component Analysis as Ensemble Method for Prediction Improvement. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 277–284. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Therrien, C.W.: Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ignac Lovrek Robert J. Howlett Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Ząbkowski, T. (2008). Generalized Extreme Value for Smooth Component Analysis in Prediction Improvement. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85563-7_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85563-7_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85562-0

  • Online ISBN: 978-3-540-85563-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics