Evaluating Large Degree Isogenies and Applications to Pairing Based Cryptography | SpringerLink
Skip to main content

Evaluating Large Degree Isogenies and Applications to Pairing Based Cryptography

  • Conference paper
Pairing-Based Cryptography – Pairing 2008 (Pairing 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5209))

Included in the following conference series:

Abstract

We present a new method to evaluate large degree isogenies between elliptic curves over finite fields. Previous approaches all have exponential running time in the logarithm of the degree. If the endomorphism ring of the elliptic curve is ‘small’ we can do much better, and we present an algorithm with a running time that is polynomial in the logarithm of the degree. We give several applications of our techniques to pairing based cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bostan, A., Morain, F., Salvy, B., Schost, E.: Fast algorithms for computing isogenies between elliptic curves. Math. Comp. 77, 1755–1778 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bröker, R., Stevenhagen, P.: Constructing elliptic curves of prime order. Contemp. Math. 463, 17–28 (2008)

    Google Scholar 

  4. Cohen, H.: A course in computational algebraic number theory. Springer Graduate Texts in Mathematics, vol. 138 (1993)

    Google Scholar 

  5. Jao, D., Venkatesan, R.: Use of isogenies for design of cryptosystems, http://www.freepatentsonline.com/EP1528705.html

  6. Kohel, D.: Endomorphism Rings of Elliptic Curves over Finite Fields, PhD thesis, University of California at Berkeley (1996)

    Google Scholar 

  7. Konstantinou, E., Stamatiou, Y.C., Zaroliagis, C.D.: On the construction of prime order elliptic curves. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 309–322. Springer, Heidelberg (2003)

    Google Scholar 

  8. Lang, S.: Elliptic functions, 2nd edn. Springer Graduate Texts in Mathematics, vol. 112 (1987)

    Google Scholar 

  9. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. on Fund. E84-A(5), 1234–1243 (2001)

    Google Scholar 

  10. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux 7, 219–254 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Silverman, J.: Advanced topics in the arithmetic of elliptic curves. Springer Graduate Texts in Mathematics, vol. 151 (1994)

    Google Scholar 

  12. Silverman, J.: The arithmetics of elliptic curves, 2nd edn. Springer Graduate Texts in Mathematics, vol. 106 (1992)

    Google Scholar 

  13. Vélu, J.: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A–B 273, A238–A241 (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Steven D. Galbraith Kenneth G. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bröker, R., Charles, D., Lauter, K. (2008). Evaluating Large Degree Isogenies and Applications to Pairing Based Cryptography. In: Galbraith, S.D., Paterson, K.G. (eds) Pairing-Based Cryptography – Pairing 2008. Pairing 2008. Lecture Notes in Computer Science, vol 5209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85538-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85538-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85503-3

  • Online ISBN: 978-3-540-85538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics