Normed BPA vs. Normed BPP Revisited | SpringerLink
Skip to main content

Normed BPA vs. Normed BPP Revisited

  • Conference paper
CONCUR 2008 - Concurrency Theory (CONCUR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5201))

Included in the following conference series:

Abstract

We present a polynomial-time algorithm deciding bisimilarity between a normed BPA process and a normed BPP process. This improves the previously known exponential upper bound by Černá, Křetínský, Kučera (1999). The algorithm relies on a polynomial bound for the “finite-state core” of the transition system generated by the BPP process. The bound is derived from the “prime form” of the underlying BPP system (where bisimilarity coincides with equality); we suggest an original algorithm for the respective transformation.

The authors acknowledge the support by the Czech Ministry of Education, Grant No. 1M0567.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  2. Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Computer Science, The Challenge of the New Century. Formal Models and Semantics, vol. 2, pp. 337–350. World Scientific Publishing Co., Singapore (2004), http://www.brics.dk/~srba/roadmap/

    Google Scholar 

  3. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary context-free processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 423–433. Springer, Heidelberg (1995)

    Google Scholar 

  5. Srba, J.: Strong bisimilarity and regularity of Basic Process Algebra is PSPACE-hard. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 716–727. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Jančar, P.: Strong bisimilarity on Basic Parallel Processes is PSPACE-complete. In: Proc. 18th LiCS, pp. 218–227. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  7. Srba, J.: Strong bisimilarity and regularity of Basic Parallel Processes is PSPACE-hard. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 535–546. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 158, 143–159 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed context-free processes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 646–657. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation equivalence of normed Basic Parallel Processes. Mathematical Structures in Computer Science 6, 251–259 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jančar, P., Kot, M.: Bisimilarity on normed Basic Parallel Processes can be decided in time O(n 3). In: Bharadwaj, R. (ed.) Proceedings of the Third International Workshop on Automated Verification of Infinite-State Systems – AVIS 2004 (2004)

    Google Scholar 

  12. Černá, I., Křetínský, M., Kučera, A.: Comparing expressibility of normed BPA and normed BPP processes. Acta Informatica 36, 233–256 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP processes. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 159–173. Springer, Heidelberg (2003)

    Google Scholar 

  14. Kučera, A., Mayr, R.: Weak bisimilarity between finite-state systems and BPA or normed BPP is decidable in polynomial time. Theoretical Computer Science 270, 667–700 (2002)

    Google Scholar 

  15. Kučera, A., Mayr, R.: A generic framework for checking semantic equivalences between pushdown automata and finite-state automata. In: IFIP TCS, pp. 395–408. Kluwer, Dordrecht (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Franck van Breugel Marsha Chechik

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jančar, P., Kot, M., Sawa, Z. (2008). Normed BPA vs. Normed BPP Revisited. In: van Breugel, F., Chechik, M. (eds) CONCUR 2008 - Concurrency Theory. CONCUR 2008. Lecture Notes in Computer Science, vol 5201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85361-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85361-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85360-2

  • Online ISBN: 978-3-540-85361-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics