Visual Search in Static and Dynamic Scenes Using Fine-Grain Top-Down Visual Attention | SpringerLink
Skip to main content

Visual Search in Static and Dynamic Scenes Using Fine-Grain Top-Down Visual Attention

  • Conference paper
Computer Vision Systems (ICVS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5008))

Included in the following conference series:

Abstract

Artificial visual attention is one of the key methodologies inspired from nature that can lead to robust and efficient visual search by machine vision systems. A novel approach is proposed for modeling of top-down visual attention in which separate saliency maps for the two attention pathways are suggested. The maps for the bottom-up pathway are built using unbiased rarity criteria while the top-down maps are created using fine-grain feature similarity with the search target as suggested by the literature on natural vision. The model has shown robustness and efficiency during experiments on visual search using natural and artificial visual input under static as well as dynamic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lanyon, L., Denham, S.: A model of object-based attention that guides active visual search to behaviourally relevant locations. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 42–56. Springer, Heidelberg (2005)

    Google Scholar 

  2. Laar, P., Heskes, T., Gielen, S.: Task-dependent learning of attention. Neural Networks 10, 981–992 (1997)

    Article  Google Scholar 

  3. Hamker, F.H.: Modeling attention: From computational neuroscience to computer vision. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 118–132. Springer, Heidelberg (2005)

    Google Scholar 

  4. Deco, G.: The computational neuroscience of visual cognition: Attention, memory and reward. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 100–117. Springer, Heidelberg (2005)

    Google Scholar 

  5. Navalpakkam, V., Itti, L.: Top-down attention selection is fine-grained. Journal of Vision 6, 1180–1193 (2006)

    Article  Google Scholar 

  6. Itti, L., Koch, U., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. Transactions on PAMI 20, 1254–1259 (1998)

    Google Scholar 

  7. Itti, L., Koch, C.: A saliency based search mechanism for overt and covert shifts of visual attention. Vision Research, pp. 1489–1506 (2000)

    Google Scholar 

  8. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research, pp. 205–231 (2005)

    Google Scholar 

  9. Navalpakkam, V., Itti, L.: Optimal cue selection strategy. In: NIPS 2006, pp. 1–8. MIT Press, Cambridge (2006)

    Google Scholar 

  10. Frintrop, S., Backer, G., Rome, E.: Goal-directed search with a top-down modulated computational attention system. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 117–124. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Michalke, T., Gepperth, A., Schneider, M., Fritsch, J., Goerick, C.: Towards a human-like vision system for resource-constrained intelligent cars. In: ICVS 2007, Bielefeld University eCollections, Germany, pp. 264–275 (2004)

    Google Scholar 

  12. Hawes, N., Wyatt, J.: Towards context-sensitive visual attention. In: Second International Cognitive Vision Workshop (ICVW 2006) (2006)

    Google Scholar 

  13. Tagare, H.D., Toyama, K., Wang, J.G.: A maximum-likelihood strategy for directing attention during visual search. Transactions on PAMI 23, 490–500 (2001)

    Google Scholar 

  14. Peters, R.J., Itti, L.: Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention. In: CVPR 2007, IEEE, Los Alamitos (2007)

    Google Scholar 

  15. Sun, Y., Fischer, R.: Object-based visual attention for computer vision. Artificial Intelligence 146, 77–123 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Backer, G., Mertsching, B., Bollmann, M.: Data- and model-driven gaze control for an active-vision system. Transactions on PAMI 23, 1415–1429 (2001)

    Google Scholar 

  17. Aziz, M.Z., Mertsching, B., Shafik, M.S., Stemmer, R.: Evaluation of visual attention models for robots. In: ICVS 2006, IEEE, New York (2006) index–20

    Google Scholar 

  18. Aziz, M.Z., Mertsching, B.: Color segmentation for a region-based attention model. In: 12. Workshop Farbbildverarbeitung (FWS 2006), pp. 74–83 (2006)

    Google Scholar 

  19. Aziz, M.Z., Mertsching, B.: Color saliency and inhibition in region based visual attention. In: WAPCV 2007, Hyderabad, India, pp. 95–108 (2007)

    Google Scholar 

  20. Aziz, M.Z., Mertsching, B.: Fast and robust generation of feature maps for region-based visual attention. In: IEEE Transactions on Image Processing (2008)

    Google Scholar 

  21. Aziz, M.Z., Mertsching, B.: Pop-out and IOR in static scenes with region based visual attention. In: WCAA-ICVS 2007, Bielefeld University eCollections (2007)

    Google Scholar 

  22. Aziz, M.Z., Mertsching, B.: Region-based top-down visual attention through fine grain color map. In: 13 Workshop Farbbildverarbeitung (FWS 2007), pp. 83–92 (2007)

    Google Scholar 

  23. Aziz, M.Z., Mertsching, B.: Color saliency and inhibition using static and dynamic scenes in region based visual attention. In: Attention in Cognitive Systems. LNCS (LNAI), vol. 4840, pp. 234–250 (2007)

    Google Scholar 

  24. Kutter, O., Hilker, C., Simon, A., Mertsching, B.: Modeling and Simulating Mobile Robots Environments. In: 3rd International Conference on Computer Graphics Theory and Applications (GRAPP 2008) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Antonios Gasteratos Markus Vincze John K. Tsotsos

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aziz, M.Z., Mertsching, B. (2008). Visual Search in Static and Dynamic Scenes Using Fine-Grain Top-Down Visual Attention. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds) Computer Vision Systems. ICVS 2008. Lecture Notes in Computer Science, vol 5008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79547-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79547-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79546-9

  • Online ISBN: 978-3-540-79547-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics