A Numerical Study of Active-Set and Interior-Point Methods for Bound Constrained Optimization | SpringerLink
Skip to main content

A Numerical Study of Active-Set and Interior-Point Methods for Bound Constrained Optimization

  • Conference paper
Modeling, Simulation and Optimization of Complex Processes

Abstract

This papers studies the performance of several interior-point and active-set methods on bound constrained optimization problems. The numerical tests show that the sequential linear-quadratic programming (SLQP) method is robust, but is not as effective as gradient projection at identifying the optimal active set. Interior-point methods are robust and require a small number of iterations and function evaluations to converge. An analysis of computing times reveals that it is essential to develop improved preconditioners for the conjugate gradient iterations used in SLQP and interior-point methods. The paper discusses how to efficiently implement incomplete Cholesky preconditioners and how to eliminate ill-conditioning caused by the barrier approach. The paper concludes with an evaluation of methods that use quasi-Newton approximations to the Hessian of the Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in interior point methods for optimization, Tech. Rep. MS-02-002, Department of Mathematics and Statistics, University of Edinburgh, Scotland, 2002.

    Google Scholar 

  2. R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz, An algorithm for nonlinear optimization using linear programming and equality constrained subproblems, Mathematical Programming, Series B, 100 (2004), pp. 27–48.

    MATH  MathSciNet  Google Scholar 

  3. R. H. Byrd, M. E. Hribar, and J. Nocedal, An interior point algorithm for large scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), pp. 877–900.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific Computing, 16 (1995), pp. 1190–1208.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. H. Byrd, J. Nocedal, and R. Waltz, KNITRO: An integrated package for nonlinear optimization, in Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma, eds., Springer, 2006, pp. 35–59.

    Google Scholar 

  6. R. H. Byrd and R. A. Waltz, Improving SLQP methods using parametric linear programs, tech. rep., OTC, 2006. To appear.

    Google Scholar 

  7. E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, Series A, 91 (2002), pp. 201–213.

    Article  MATH  Google Scholar 

  8. A. Forsgren, P. E. Gill, and J. D. Griffin, Iterative solution of augmented systems arising in interior methods, Tech. Rep. NA 05-3, Department of Mathematics, University of California, San Diego, 2005.

    Google Scholar 

  9. R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Scientific Press, 1993. www.ampl.com.

    Google Scholar 

  10. P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Journal on Optimization, 12 (2002), pp. 979–1006.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr and sifdec : A Constrained and Unconstrained Testing Environment, revisited, ACM Trans. Math. Softw., 29 (2003), pp. 373–394.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. I. M. Gould, D. Orban, and P. L. Toint, Numerical methods for large-scale nonlinear optimization, Technical Report RAL-TR-2004-032, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2004.

    Google Scholar 

  13. C. Keller, N. I. M. Gould, and A. J. Wathen, Constraint preconditioning for indefinite linear systems, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1300–1317.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. J. Lin and J. J. Moré, Incomplete Cholesky factorizations with limited memory, SIAM Journal on Scientific Computing, 21 (1999), pp. 24–45.

    Article  MATH  MathSciNet  Google Scholar 

  15. C. J. Lin and J. J. Moré, , Newton’s method for large bound-constrained optimization problems, SIAM Journal on Optimization, 9 (1999), pp. 1100–1127.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Roma, Dynamic scaling based preconditioning for truncated Newton methods in large scale unconstrained optimization: The complete results, Technical Report R. 579, Istituto di Analisi dei Sistemi ed Informatica, 2003.

    Google Scholar 

  17. T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM Journal on Numerical Analysis, 20 (1983), pp. 626–637.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps, Mathematical Programming, Series A, 107 (2006), pp. 391–408.

    MATH  MathSciNet  Google Scholar 

  19. C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Algorithm 78: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization, ACM Transactions on Mathematical Software, 23 (1997), pp. 550–560.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hei, L., Nocedal, J., Waltz, R.A. (2008). A Numerical Study of Active-Set and Interior-Point Methods for Bound Constrained Optimization. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79409-7_18

Download citation

Publish with us

Policies and ethics