Abstract
The triangular mesh surfaces (TMS) which result form the Marching Cubes (MC) algorithm have some unique and special properties not shared by general TMS. We exploit some of these properties in the development of some new, effective and efficient methods for parameterizing these surfaces. The parameterization consists of a planar triangulation which is isomorphic (maps one-to-one) to the triangular mesh. The parameterization is computed as the solution of a sparse linear system of equations which is based upon the fact that locally the MC surfaces are functions (height-fields). The coefficients of the linear system utilize natural neighbor coordinates (NNC) which depend upon Dirchlet tessellations. While the use of NNC for general TMS can be somewhat computationally expensive and is often done procedurally, for the present case of MC surfaces, we are able to obtain simple and explicit formulas which lead to efficient computational algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boissonnat, J.D., Cazals, F.: Smooth surface reconstruction via natural neighor interpolation of distance functions. In: Proc. 16th Annu. Sympos. Comput. Geom., pp. 223–232 (2000)
Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Eurographics, Computer Graphics Forum 21(2), 666–911 (2002)
Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geoemtric Design 14(3), 231–250 (1997)
Floater, M.S.: Parametric tilings and scattered data approximation, Intern. J. Shape Modeling 4, 165–182 (1998)
Floater, M.S.: Mean Value Coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)
Floater, M.S., Hormann, K.: Parameterization of triangulations and unorganized points. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorial on Multiresolution in Geometric Modelling, pp. 287–314. Springer, Heidelberg (2002)
Floater, M.S., Hormann, K.: A Tutorial and Survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modellling, Springer, Heidelberg (2006)
Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its applications to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)
Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G.: Conformal surface parameterization for texture mapping. Transactions on Visualization and Computer Graphics 6, 181–189 (2000)
Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R.: Non-distorting Flattening for Virtual Colonoscopy. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 358–366. Springer, Heidelberg (2000)
Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, vol. 85, pp. 85–93 (2006)
Hormann, K., Greiner, G.: MIPS: an efficient global parametrizaton method. In: Laurent, P.-J., Sablonniere, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 153–162. Vanderbilt University Press, Nashville (1999)
Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Segmentation of MRI of brain tumors. Radiology 218, 586–591 (2001)
Lodha, S., Franke, R.: Scattered Data Techniques for Surfaces. In: Hagen, H., Nielson, G., Post, F. (eds.) Scientific Visualization Dagstuhl 1997, pp. 181–222 (1999)
Meyer, M., Barr, A., Lee, H., Desbrun, M.: Generalized barycentric coordinates or irregular polygons. Journal of Graphical Tools 17, 13–22 (2002)
Nielson, G.M.: On Marching Cubes. IEEE Transactions on Visualization and Computer Graphics 9, 283–297 (2003)
Nielson, G.M.: MC*: Star functions for marching cubes. In: Proceedings of Visualization 2003, pp. 59–66 (2003b)
Nielson, G.M., Zhang, L., Lee, K.: Lifting Curve Parameterization Methods to Isosurfaces. Computer Aided Geometric Design 21, 751–756 (2004)
Nielson, G.M., Graf, G., Huang, A., Phliepp, M., Holmes, R.: Shrouds: Optimal separating surface for enumerated volumes. In: VisSym 2003, Eurographics Association, pp. 75–84 (2003)
Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)
Sibson, R.: A Brief Description of Natural Neighbor Interpolation. In: Barnett, D.V. (ed.) Interpreting Multivariate Data, pp. 21–36. Wiley, New York (1981)
Tutte, W.T.: Convex representation of graphs. Proc. London Math. Soc. 10, 304–320 (1960)
Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–768 (1963)
Wachpress, E.: A Rational Finite Element Basis. Academic Press, London (1975)
Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)
Watson, D.F.: nngridr: an implementation of natural neighbor interpolation. David Watson, Claremont, Australia (1994)
Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nielson, G.M., Zhang, L., Lee, K., Huang, A. (2008). Parameterizing Marching Cubes Isosurfaces with Natural Neighbor Coordinates. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-79246-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79245-1
Online ISBN: 978-3-540-79246-8
eBook Packages: Computer ScienceComputer Science (R0)