Parameterizing Marching Cubes Isosurfaces with Natural Neighbor Coordinates | SpringerLink
Skip to main content

Parameterizing Marching Cubes Isosurfaces with Natural Neighbor Coordinates

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

Abstract

The triangular mesh surfaces (TMS) which result form the Marching Cubes (MC) algorithm have some unique and special properties not shared by general TMS. We exploit some of these properties in the development of some new, effective and efficient methods for parameterizing these surfaces. The parameterization consists of a planar triangulation which is isomorphic (maps one-to-one) to the triangular mesh. The parameterization is computed as the solution of a sparse linear system of equations which is based upon the fact that locally the MC surfaces are functions (height-fields). The coefficients of the linear system utilize natural neighbor coordinates (NNC) which depend upon Dirchlet tessellations. While the use of NNC for general TMS can be somewhat computationally expensive and is often done procedurally, for the present case of MC surfaces, we are able to obtain simple and explicit formulas which lead to efficient computational algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boissonnat, J.D., Cazals, F.: Smooth surface reconstruction via natural neighor interpolation of distance functions. In: Proc. 16th Annu. Sympos. Comput. Geom., pp. 223–232 (2000)

    Google Scholar 

  2. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Eurographics, Computer Graphics Forum 21(2), 666–911 (2002)

    Google Scholar 

  3. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geoemtric Design 14(3), 231–250 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Floater, M.S.: Parametric tilings and scattered data approximation, Intern. J. Shape Modeling 4, 165–182 (1998)

    Article  Google Scholar 

  5. Floater, M.S.: Mean Value Coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Floater, M.S., Hormann, K.: Parameterization of triangulations and unorganized points. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorial on Multiresolution in Geometric Modelling, pp. 287–314. Springer, Heidelberg (2002)

    Google Scholar 

  7. Floater, M.S., Hormann, K.: A Tutorial and Survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modellling, Springer, Heidelberg (2006)

    Google Scholar 

  8. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its applications to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)

    Article  Google Scholar 

  9. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G.: Conformal surface parameterization for texture mapping. Transactions on Visualization and Computer Graphics 6, 181–189 (2000)

    Article  Google Scholar 

  10. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R.: Non-distorting Flattening for Virtual Colonoscopy. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 358–366. Springer, Heidelberg (2000)

    Google Scholar 

  11. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, vol. 85, pp. 85–93 (2006)

    Google Scholar 

  12. Hormann, K., Greiner, G.: MIPS: an efficient global parametrizaton method. In: Laurent, P.-J., Sablonniere, P., Schumaker, L.L. (eds.) Curve and Surface Design: Saint-Malo 1999, pp. 153–162. Vanderbilt University Press, Nashville (1999)

    Google Scholar 

  13. Kaus, M., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Segmentation of MRI of brain tumors. Radiology 218, 586–591 (2001)

    Google Scholar 

  14. Lodha, S., Franke, R.: Scattered Data Techniques for Surfaces. In: Hagen, H., Nielson, G., Post, F. (eds.) Scientific Visualization Dagstuhl 1997, pp. 181–222 (1999)

    Google Scholar 

  15. Meyer, M., Barr, A., Lee, H., Desbrun, M.: Generalized barycentric coordinates or irregular polygons. Journal of Graphical Tools 17, 13–22 (2002)

    Google Scholar 

  16. Nielson, G.M.: On Marching Cubes. IEEE Transactions on Visualization and Computer Graphics 9, 283–297 (2003)

    Article  Google Scholar 

  17. Nielson, G.M.: MC*: Star functions for marching cubes. In: Proceedings of Visualization 2003, pp. 59–66 (2003b)

    Google Scholar 

  18. Nielson, G.M., Zhang, L., Lee, K.: Lifting Curve Parameterization Methods to Isosurfaces. Computer Aided Geometric Design 21, 751–756 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nielson, G.M., Graf, G., Huang, A., Phliepp, M., Holmes, R.: Shrouds: Optimal separating surface for enumerated volumes. In: VisSym 2003, Eurographics Association, pp. 75–84 (2003)

    Google Scholar 

  20. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 15–36 (1993)

    MATH  MathSciNet  Google Scholar 

  21. Sibson, R.: A Brief Description of Natural Neighbor Interpolation. In: Barnett, D.V. (ed.) Interpreting Multivariate Data, pp. 21–36. Wiley, New York (1981)

    Google Scholar 

  22. Tutte, W.T.: Convex representation of graphs. Proc. London Math. Soc. 10, 304–320 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13, 743–768 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wachpress, E.: A Rational Finite Element Basis. Academic Press, London (1975)

    Google Scholar 

  25. Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)

    Article  Google Scholar 

  26. Watson, D.F.: nngridr: an implementation of natural neighbor interpolation. David Watson, Claremont, Australia (1994)

    Google Scholar 

  27. Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nielson, G.M., Zhang, L., Lee, K., Huang, A. (2008). Parameterizing Marching Cubes Isosurfaces with Natural Neighbor Coordinates. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics