Modeling Interests of Web Users for Recommendation: A User Profiling Approach and Trends | SpringerLink
Skip to main content

Modeling Interests of Web Users for Recommendation: A User Profiling Approach and Trends

  • Chapter
Evolution of the Web in Artificial Intelligence Environments

Part of the book series: Studies in Computational Intelligence ((SCI,volume 130))

Abstract

In order to personalize Web-based tasks, personal agents rely on representations of user interests and preferences contained in user profiles. In consequence, a critical component for these agents is their capacity to acquire and model user interest categories as well as adapt them to changes in user interests over time. In this chapter, we address the problem of modeling the information preferences of Web users and its distinctive characteristics. We discuss the limitations of current profiling approaches and present a novel user profiling technique, named WebProfiler, developed to support incremental learning and adaptation of user profiles in agents assisting users with Web-based tasks. This technique aims at acquiring comprehensible user profiles that accurately capture user interests starting from observation of user behavior on the Web.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  3. Belkin, N., Kay, J., Tasso, C.: Special issue on user modeling and information filtering. In: User Modeling and User Adapted Interaction, vol. 7. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  4. Billsus, D., Pazzani, M.J.: A hybrid user model for news story classification. In: Kay, J. (ed.) Proceedings of the 7th International Conference on User Modeling (UM 1999), Banff, Canada, pp. 99–108. Springer, Heidelberg (1999)

    Google Scholar 

  5. Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Sycara, K.P., Wooldridge, M. (eds.) Proceedings of the 2nd International Conference on Autonomous agents, St. Paul, USA, pp. 132–139. ACM Press, New York (1998)

    Chapter  Google Scholar 

  6. Chen, M.-S., Park, J.S., Yu, P.: Efficient data mining for path traversal patterns. IEEE Transactions on Knowledge and Data Engineering 10(2), 209–221 (1998)

    Article  Google Scholar 

  7. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms and representations for text categorization. In: Proceedings of the 7th International Conference on Information and Knowledge Management (CIKM 1998), Bethesda, USA, pp. 148–155. ACM Press, New York (1998)

    Chapter  Google Scholar 

  8. Dyke, N.W.V., Lieberman, H., Maes, P.: Butterfly: A conversation-finding agent for internet relay chat. In: Proceedings of the 1999 International Conference on Intelligent User Interfaces, Los Angeles, USA, pp. 39–41. ACM Press, New York (1999)

    Chapter  Google Scholar 

  9. Gauch, S., Chaffee, J., Pretschner, A.: Ontology-based personalized search and browsing. Journal of Web Intelligence and Agent Systems 1(3-4), 219–234 (2003)

    Google Scholar 

  10. Gluck, M.A., Corter, J.E.: Information, uncertainty, and the utility of categories. In: Proceedings of the Seventh Annual Conference of the Cognitive Science Society, Irvine, USA, pp. 283–287 (1985)

    Google Scholar 

  11. Godoy, D., Amandi, A.: User profiling in personal information agents: A survey. The Knowledge Engineering Review 20(4), 329–361 (2005)

    Article  Google Scholar 

  12. Godoy, D., Amandi, A.: A conceptual clustering approach for user profiling in personal information agents. AI Communications 19(3), 207–227 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Godoy, D., Amandi, A.: Learning browsing patterns for context-aware recommendation. In: Bramer, M. (ed.) IFIP International Federation for Information Processing. Artificial Intelligence in Theory and Practice, vol. 217, pp. 61–70. Springer, Heidelberg (2006)

    Google Scholar 

  14. Godoy, D., Amandi, A.: Interest drifts in user profiling: A relevance-based approach and analysis of scenarios. The Computer Journal 2008; doi: 10.1093/comjnl/bxm107

    Google Scholar 

  15. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of ACM 2000 Conference on Computer Supported Cooperative Work, Philadelphia, USA, pp. 241–250. ACM Press, New York (2000)

    Chapter  Google Scholar 

  16. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  17. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach, pp. 331–363. Morgan Kaufmann, San Francisco (1984)

    Google Scholar 

  18. Middleton, S.E., Shadbolt, N.R., Roure, D.C.D.: Ontological user profiling in recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 54–88 (2004)

    Article  Google Scholar 

  19. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  20. Mitchell, T.M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D.: Experience with a learning personal assistant. Communications of the ACM 37(7), 80–91 (1994)

    Article  Google Scholar 

  21. Mladenic, D.: Using text learning to help Web browsing. In: Smith, M., Salvendy, G., Harris, D., Koubek, R.J. (eds.) Proceedings of the 9th International Conference on Human-Computer Interaction, HCI International 2001, Usability Evaluation and Interface Design, New Orleans, USA, vol. 1, pp. 893–897. Lawrence Erlbaum Associates, Mahwah (2001)

    Google Scholar 

  22. Moukas, A., Maes, P.: Amalthaea: An evolving multi-agent information filtering and discovery system for the WWW. Autonomous Agents and Multi-Agent Systems 1(1), 59–88 (1998)

    Article  Google Scholar 

  23. Müller, M.E.: Inducing content based user models with inductive logic programming techniques. In: Proceedings of the UM 2001 Workshop on Machine Learning for User Modeling, Sonthofen, Germany, pp. 67–76 (2001)

    Google Scholar 

  24. Müller, M.E.: Can user models be learned at all? inherent problems in machine learning for user modelling. The Knowledge Engineering Review 19(1), 61–88 (2004)

    Article  Google Scholar 

  25. Payne, T., Edwards, P., Green, C.: Experience with rule induction and k-nearest neighbour methods for interface agents that learn. IEEE Transactions on Knowledge and Data Engineering 9(2), 329–335 (1997)

    Article  Google Scholar 

  26. Pazzani, M., Muramatsu, J., Billsus, D.: Syskill&Webert: Identifying interesting Web sites. In: Proceedings of the 13th National Conference on Artificial Intelligence and 8th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI 1996), vol. 1, pp. 54–61. AAAI/MIT Press, Portland, USA (1996)

    Google Scholar 

  27. Rennie, J.D.M.: iFile: An application of machine learning to E-mail filtering. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Workshop on Text Mining (KDD 2000), Boston, USA (2000)

    Google Scholar 

  28. Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System, pp. 313–323. Prentice Hall, Englewood Cliffs (1971)

    Google Scholar 

  29. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18, 613–620 (1975)

    Article  MATH  Google Scholar 

  30. Schwab, I., Pohl, W., Koychev, I.: Learning to recommend from positive evidence. In: Proceedings of the 5th International Conference on Intelligent User Interfaces, New Orleans, USA, pp. 241–247. ACM Press, New York (2000)

    Chapter  Google Scholar 

  31. Sieg, A., Mobasher, B., Burke, R.: Ontological user profiles for personalized Web search. In: Proceedings of the 5th Workshop on Intelligent Techniques for Web Personalization, Vancouver, Canada, pp. 84–91. AAAI Press, Menlo Park (2007)

    Google Scholar 

  32. Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proceedings of the 21th International Conference on Very Large Data Bases, pp. 407–419. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  33. Thompson, K., Langley, P.: Concept formation in structured domains. In: Fisher, D., Pazzani, M., Langley, P. (eds.) Concept Formation: Knowledge and Experience in Unsupervised Learning, Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  34. Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User Modeling and User-Adapted Interaction 11(1-2), 19–29 (2001)

    Article  MATH  Google Scholar 

  35. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  36. Widyantoro, D.H., Ioerger, T.R., Yen, J.: Learning user interest dynamics with a three-descriptor representation. Journal of the American Society for Information Science and Technology 52(3), 212–225 (2001)

    Article  Google Scholar 

  37. Widyantoro, D.H., Ioerger, T.R., Yen, J.: Tracking changes in user interests with a few relevance judgments. In: ACM CIKM International Conference on Information and Knowledge Management (CIKM 2003), New Orleans, USA, pp. 548–551. ACM Press, New York (2003)

    Chapter  Google Scholar 

  38. Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for document datasets. In: Proceedings of the 11th International Conference on Information and Knowledge Management, pp. 515–524. ACM Press, New York (2002)

    Google Scholar 

  39. Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. User Modeling and User-Adapted Interaction 11(1-2), 5–18 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Richi Nayak Nikhi Ichalkaranje Lakhmi C. Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Godoy, D., Amandi, A. (2008). Modeling Interests of Web Users for Recommendation: A User Profiling Approach and Trends. In: Nayak, R., Ichalkaranje, N., Jain, L.C. (eds) Evolution of the Web in Artificial Intelligence Environments. Studies in Computational Intelligence, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79140-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79140-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79139-3

  • Online ISBN: 978-3-540-79140-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics