Abstract
The paper presents time-related part of PSI1 theoretical framework. In comparison to other theories of time based on interval logics our approach presents the advancement by introducing fuzziness of time intervals as transition periods at beginnings and endings. It is argued that, though quite simple (discrete, linear, and anisotropic), our theoretical model is expressive enough to be used as a logical formalism for reasoning about stochastic, unpredictable, weakly defined action and process flows. A metric and a rich set of axiomatic relationships among time intervals are introduced for that. Further on, a means for modeling and reasoning about singular, repeated, regular events and actions having phases and vague durations is elaborated. Presented theory of time is used for modeling and reasoning about events, environmental influences, happenings, and actions while planning and scheduling in our simulations of dynamic engineering design processes.
Performance Simulation Initiative (PSI) is the project of Cadence Design Systems, GmbH.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ermolayev, V., Matzke, W.-E.: Towards Industrial Strength Business Performance Management. In: MařÍk, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007. LNCS (LNAI), vol. 4659, pp. 387–400. Springer, Heidelberg (2007)
Aristotle: Physics. Translated by R. P. Hardie and R. K. Gaye, eBooks@Adelaide (2007)
Etzion, O., Jajodia, S., Sripada, S.: Temporal Databases: Research and Practice. Springer, New York (1998)
Vila, L.: A survey on temporal reasoning in artificial intelligence. Artificial Intelligence Communications 7, 4–28 (1994)
A UML Profile for MARTE, Beta 1. OMG Adopted Specification, http://www.omg.org/docs/ptc/07-08-04.pdf
Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb Deliverable D18. Ontology Library (final). Technical Report. Laboratory for Applied Ontology, ISTCCNR, Trento, Italy (2003)
Allen, J., Ferguson, G.: Actions and Events in Interval Temporal Logic. J. of Logic and Computation 4(5), 531–579 (1994)
Ermolayev, V., Jentzsch, E., Keberle, N., Sohnius, R.: Performance Simulation Initiative. The Suite of Ontologies v.2.1. Reference Specification. Technical Report PSI-ONTO-TR-2007-1, VCAD EMEA Cadence Design Systems, GmbH (2007)
Niles, I., Pease, A.: Towards a Standard Upper Ontology. In: Guarino, N., Smith, B., Welty, C. (eds.) Proc. Int. Conf. on Formal Ontologies in Information Systems (FOIS 2001), pp. 2–9. ACM Press, New York (2001)
Ermolayev, V., Jentzsch, E., Matzke, W.-E., Pěchouček, M., Sohnius, R.: Performance Simulation Initiative. Theoretical Framework v.2.0. Technical Report PSI-T-TR-2007-1, VCAD EMEA Cadence Design Systems GmbH, Feldkirchen, Germany (2007)
Ermolayev, V., Jentzsch, E., Keberle, N., Sohnius, R.: Performance Simulation Initiative. Theory of Time, Events, and Happenings. Technical Report PSI-T-TR-2007-2, VCAD EMEA Cadence Design Systems GmbH, Feldkirchen, Germany (2007)
Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets series, vol. 7. Springer, Heidelberg (2000)
Schreiber, F.A.: Is Time a Real Time? An Overview of Time Ontology in Informatics. In: Halang, W.A., Stoyenko, A.D. (eds.) Real Time Computing. Springer Verlag NATO ASI, vol. F 127, pp. 283–307. Springer, Berlin (1994)
Nagypál, G., Motik, B.: A Fuzzy Model for Representing Uncertain, Subjective and Vague Temporal Knowledge in Ontologies. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 906–923. Springer, Heidelberg (2003)
Godo, L., Vila, L.: Possibilistic Temporal Reasoning Based on Fuzzy Temporal Constraints. In: 14th Int. Joint Conf. on Artificial Intelligence (IJCAI 1995), vol. 2, pp. 1916–1923. Morgan Kaufmann Publishers, Burlington (1995)
Dubois, D., Hadjali, A., Prade, H.: Fuzziness and Uncertainty in Temporal Reasoning. J. Universal Computer Science 9(9), 1168–1194 (2003)
Badaloni, S., Giacomin, M.: The Algebra IAfuz: a Framework for Qualitative Fuzzy Temporal Reasoning. Artificial Intelligence 170(10), 872–908 (2006)
Ohlbach, H.J.: Relations between Fuzzy Time Intervals. In: Combi, C., Ligozad, G. (eds.) 11th Int. Symposium on Temporal Representation and Reasoning (TIME 2004), Washington DC, USA, pp. 44–51. IEEE Computer Society Press, Los Alamitos (2004)
Schockaert, S., De Cock, M., Kerre, E.E.: Imprecise Temporal Interval relations. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 108–113. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ermolayev, V., Keberle, N., Matzke, WE., Sohnius, R. (2008). Fuzzy Time Intervals for Simulating Actions. In: Kaschek, R., Kop, C., Steinberger, C., Fliedl, G. (eds) Information Systems and e-Business Technologies. UNISCON 2008. Lecture Notes in Business Information Processing, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78942-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-540-78942-0_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78941-3
Online ISBN: 978-3-540-78942-0
eBook Packages: Computer ScienceComputer Science (R0)