Characterization of Graphs Using Degree Cores | SpringerLink
Skip to main content

Characterization of Graphs Using Degree Cores

  • Conference paper
Algorithms and Models for the Web-Graph (WAW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4936))

Included in the following conference series:

  • 649 Accesses

Abstract

Generative models are often used in modeling real world graphs such as the Web graph in order to better understand the processes through which these graphs are formed. In order to determine if a graph might have been generated by a given model one must compare the features of that graph with those generated by the model. We introduce the concept of a hierarchical degree core tree as a novel way of summarizing the structure of massive graphs. The degree core of level k is the unique subgraph of minimal degree k. Hierarchical degree core trees are representations of the subgraph relationships between the components of the degree core of the graph, ranging over all possible values of k. We extract features related to the graph’s local structure from these hierarchical trees. Using these features, we compare four real world graphs (a web graph, a patent citation graph, a co-authorship graph and an email graph) against a number of generative models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515

    Google Scholar 

  2. Batagelj, V.: Zaveršnik, M.: Generalized Cores. ArXiv Computer Science e-prints (2002)

    Google Scholar 

  3. Seidman, S.B.: Network structure and minimum degree. Social Networks, 269–287 (1983)

    Google Scholar 

  4. Wasserman, S., Faust, K.: Social network analysis: Methods and applications. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  5. Alvarez-Hamelin, I., Dall’Asta, L., Barrat, A., Vespignani, A.: DELIS-TR-0166 - k-core decomposition: A tool for the visualization of large scale networks. techreport 0166, DELIS – Dynamically Evolving Large-scale Information Systems (2004)

    Google Scholar 

  6. Alvarez-Hamelin, I., Barrat, A., Dall’Asta, L., Vespignani, A.: k-core decomposition: A tool for the analysis of large scale internet graphs. Computer Science, cs.NI/0511007 (2005)

    Google Scholar 

  7. Batagelj, V., Mrvar, A.: Pajek - Analysis and Visualization of Large Networks, vol. 2265 (January 2002)

    Google Scholar 

  8. Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics (2005)

    Google Scholar 

  9. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  10. Gaertler, M., Patrignani, M.: DELIS-TR-0003 - dynamic analysis of the autonomous system graph. In: Proceedings 0003, 2004, IPS 2004 (Inter-Domain Performance and Simulation) (2004)

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  12. Bonato, A.: A survey of models of the web graph. In: Proceedings of the Workshop on Combinatorial and Algorithmic Aspects of Networking (CANN 2004), Springer, Heidelberg (2004)

    Google Scholar 

  13. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. Journal of Computational Biology 10(5), 677–687 (2003)

    Article  Google Scholar 

  14. TREC: The.gov test collection (last accessed August 28, 2006)

    Google Scholar 

  15. Hall, B.H., Jaffe, A.B., Trajtenberg, M.: The nber patent citation data file: Lessons, insights and methodological tools. NBER Working Papers 8498, National Bureau of Economic Research, Inc (October 2001) (last accessed August, 30 2006), http://ideas.repec.org/p/nbr/nberwo/8498.html

  16. Wan, X., Janssen, J., Kalyaniwalla, N., Milios, E.: Statistical analysis of dynamic graphs. In: Proceedings of AISB 2006: Adaptation in Artificial and Biological Systems, vol. 3, pp. 176–179 (2006)

    Google Scholar 

  17. Angelova, R., Weikum, G.: Graph-based text classification: Learn from your neighbors. In: 29th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR 2006), Association for Computing Machinery (ACM), pp. 485–492. ACM, New York (2006)

    Chapter  Google Scholar 

  18. Erdős, P., Rényi, A.: On random graphs. Publicationes Mathematicae (1959)

    Google Scholar 

  19. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci (1961)

    Google Scholar 

  20. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  21. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures Algorithms (2001)

    Google Scholar 

  22. Chung, F., Lu, L.: Coupling online and offline analyses for random power law graphs. In: Internet Mathematics (2003)

    Google Scholar 

  23. Siek, J.G., Lee, L.Q., Lumsdaine, A.: The boost graph library: User guide and reference manual. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

William Aiello Andrei Broder Jeannette Janssen Evangelos Milios

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Healy, J., Janssen, J., Milios, E., Aiello, W. (2008). Characterization of Graphs Using Degree Cores. In: Aiello, W., Broder, A., Janssen, J., Milios, E. (eds) Algorithms and Models for the Web-Graph. WAW 2006. Lecture Notes in Computer Science, vol 4936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78808-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78808-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78807-2

  • Online ISBN: 978-3-540-78808-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics