Randomized Rendez-Vous with Limited Memory | SpringerLink
Skip to main content

Randomized Rendez-Vous with Limited Memory

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

  • 1727 Accesses

Abstract

We present a tradeoff between the expected time for two identical agents to rendez-vous on a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we show that there exists a 2t state agent, which can achieve rendez-vous on an n node ring in expected time O( n 2/2t + 2t ) and that any t/2 state agent requires expected time Ω( n 2/2t ). As a corollary we observe that Θ(loglogn) bits of memory are necessary and sufficient to achieve rendez-vous in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, S.: The rendezvous search problem. SIAM Journal of Control and Optimization 33, 673–683 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers, Norwell, Massachusetts (2003)

    MATH  Google Scholar 

  3. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM Journal of Discrete Mathematics 6, 363–374 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)

    Google Scholar 

  5. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

    Google Scholar 

  6. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F., Santoro, N., Sawchuk, C.: Mobile agent rendezvous when tokens fail. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)

    Google Scholar 

  7. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in the ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

    Google Scholar 

  8. Gasieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous of anonymous mobile agents in a uni-directional ring. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 282–292. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Kowalski, D., Malinowski, A.: How to meet in an anonymous network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)

    Google Scholar 

  11. Kranakis, E., Krizanc, D.: An algorithmic theory of mobile agents. In: Symposium on Trustworthy Global Computing (2006)

    Google Scholar 

  12. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Kranakis, E., Krizanc, D., Rajasbaum, S.: Mobile agent rendezvous: A survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous search problem in the ring. In: Proc. International Conference on Distributed Computing Systems (ICDCS), pp. 592–599 (2003)

    Google Scholar 

  15. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vacaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  17. Ross, S.M.: Probability Models for Computer Science. Harcourt Academic Press, London (2002)

    Google Scholar 

  18. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms, performance bounds and observations. Autonomous Robots 11, 117–136 (2001)

    Article  MATH  Google Scholar 

  19. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley, Hoboken (2006)

    Google Scholar 

  20. Sawchuk, C.: Mobile Agent Rendezvous in the Ring. PhD thesis, Carleton University, School of Computer Science, Ottawa, Canada (2004)

    Google Scholar 

  21. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal of Computing 28, 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kranakis, E., Krizanc, D., Morin, P. (2008). Randomized Rendez-Vous with Limited Memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics