Abstract
We present a tradeoff between the expected time for two identical agents to rendez-vous on a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we show that there exists a 2t state agent, which can achieve rendez-vous on an n node ring in expected time O( n 2/2t + 2t ) and that any t/2 state agent requires expected time Ω( n 2/2t ). As a corollary we observe that Θ(loglogn) bits of memory are necessary and sufficient to achieve rendez-vous in linear time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpern, S.: The rendezvous search problem. SIAM Journal of Control and Optimization 33, 673–683 (1995)
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers, Norwell, Massachusetts (2003)
Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM Journal of Discrete Mathematics 6, 363–374 (1993)
Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003)
Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)
Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F., Santoro, N., Sawchuk, C.: Mobile agent rendezvous when tokens fail. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)
Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile agent rendezvous in the ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)
Gasieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous of anonymous mobile agents in a uni-directional ring. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 282–292. Springer, Heidelberg (2006)
Kowalski, D., Malinowski, A.: How to meet in an anonymous network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)
Kowalski, D., Pelc, A.: Polynomial deterministic rendezvous in arbitrary graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 644–656. Springer, Heidelberg (2004)
Kranakis, E., Krizanc, D.: An algorithmic theory of mobile agents. In: Symposium on Trustworthy Global Computing (2006)
Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)
Kranakis, E., Krizanc, D., Rajasbaum, S.: Mobile agent rendezvous: A survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)
Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous search problem in the ring. In: Proc. International Conference on Distributed Computing Systems (ICDCS), pp. 592–599 (2003)
De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vacaro, U.: Asynchronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)
Ross, S.M.: Probability Models for Computer Science. Harcourt Academic Press, London (2002)
Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms, performance bounds and observations. Autonomous Robots 11, 117–136 (2001)
Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley, Hoboken (2006)
Sawchuk, C.: Mobile Agent Rendezvous in the Ring. PhD thesis, Carleton University, School of Computer Science, Ottawa, Canada (2004)
Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal of Computing 28, 1347–1363 (1999)
Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kranakis, E., Krizanc, D., Morin, P. (2008). Randomized Rendez-Vous with Limited Memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_52
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)