Approximation Algorithms for k-Hurdle Problems | SpringerLink
Skip to main content

Approximation Algorithms for k-Hurdle Problems

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

  • 1714 Accesses

Abstract

The polynomial-time solvable k-hurdle problem is a natural generalization of the classical s-t minimum cut problem where we must select a minimum-cost subset S of the edges of a graph such that |p ∩ S| ≥ k for every s-t path p. In this paper, we describe a set of approximation algorithms for “k-hurdle” variants of the NP-hard multiway cut and multicut problems. For the k-hurdle multiway cut problem with r terminals, we give two results, the first being a pseudo-approximation algorithm that outputs a (k − 1)-hurdle solution whose cost is at most that of an optimal solution for k hurdles. Secondly, we provide two different \(2(1-\frac{1}{r})\)-approximation algorithms. The first is based on rounding the solution of a linear program that embeds our graph into a simplex, and although this same linear program yields stronger approximation guarantees for the traditional multiway cut problem, we show that its integrality gap increases to \(2(1 -\frac{1}{r})\) in the k-hurdle case. Our second approximation result is based on half-integrality, for which we provide a simple randomized half-integrality proof that works for both edge and vertex k-hurdle multiway cuts that generalizes the half-integrality results of Garg et al. for the vertex multiway cut problem. For the k-hurdle multicut problem in an n-vertex graph, we provide an algorithm that, for any constant ε> 0, outputs a ⌈(1 − ε) k⌉-hurdle solution of cost at most O(logn) times that of an optimal k-hurdle solution, and we obtain a 2-approximation algorithm for trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avidor, A., Langberg, M.: The multi-multiway cut problem. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 273–284. Springer, Heidelberg (2004)

    Google Scholar 

  2. Barany, I., Edmonds, J., Wolsey, L.A.: Packing and covering a tree by subtrees. Combinatorica 6(3), 221–233 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burch, C., Carr, R., Krumke, S., Marathe, M., Phillips, C.: A decomposition-based pseudoapproximation algorithm for network flow inhibition. In: Woodruff, D.L. (ed.) Network Interdiction and Stochastic Integer Programming, pp. 51–68. Kluwer Academic Press, Dordrecht (2003)

    Chapter  Google Scholar 

  4. Burch, C., Krumke, S., Marathe, M., Phillips, C., Sundberg, E.: Multicriteria approximation through decomposition, Technical Report (1997)

    Google Scholar 

  5. Călinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for MULTIWAY CUT. Journal of Computer and System Sciences 60(3), 564–574 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheung, K., Cunningham, W.H., Tang, L.: Optimal 3-terminal cuts and linear programming. Mathematical Programming 106(1) (2006)

    Google Scholar 

  7. Cunningham, W.H.: Optimal attack and reinforcement of a network. Journal of the ACM 32(3), 549–561 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  10. Fulkerson, D.R., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Mathematical Programming 13, 116–118 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs. Journal of Algorithms 50(1), 49–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldberg, A., Tarjan, R.: Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 15, 430–466 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Golovin, D., Nagarajan, V., Singh, M.: Approximation the k-multicut problem. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 621–630 (2006)

    Google Scholar 

  16. Israeli, E., Wood, R.K.: Shortest path network interdiction. Networks 40(2), 97–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations Research 29(3), 436–461 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krumke, S., Noltemeier, H., Ravi, R., Schwarz, S., Wirth, H.-C.: Flow improvement and flows with fixed costs. In: Proceedings of the International Conference on Operations Research (OR), pp. 158–167 (1998)

    Google Scholar 

  19. Levin, A., Segev, D.: Partial multicuts in trees. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 320–333. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Meignen, R., Berthoud, G., Schwarz, S., Krumke, S.: On budget-constrained flow improvement. Information Processing Letters 66(3), 291–297 (1998)

    MathSciNet  Google Scholar 

  21. Nishihara, O., Inoue, K.: An algorithm for a multiple disconnecting set problem. Unpublished manuscript, Department of Aeronautical Engineering, Kyoto University (1988)

    Google Scholar 

  22. Nishihara, O., Kumamoto, H., Inoue, K.: An algorithm for a multiple cut problem and its application. In: 13th International Symposium on Mathematical Programming (1988)

    Google Scholar 

  23. Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis. In: Proceedings of the DARPA Information Survivability Conference and Exposition, pp. 71–79 (2000)

    Google Scholar 

  24. Phillips, C.A.: The network inhibition problem. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 776–785 (1993)

    Google Scholar 

  25. Wagner, D.K.: Disjoint (s,t)-cuts in a network. Networks 20, 361–371 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wagner, D.K., Wan, H.: A polynomial-time simplex method for the maximum k-flow problem. Mathematical Programming 30, 115–123 (1993)

    Article  MathSciNet  Google Scholar 

  27. Wood, R.K.: Deterministic network interdiction. Mathematical and Computer Modeling 17(2), 1–18 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dean, B.C., Griffis, A., Whitley, A. (2008). Approximation Algorithms for k-Hurdle Problems. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics