Abstract
We consider the longest common subsequence problem (lcs) and a variant of it where each symbol may occur at most once in the common subsequence. The lcs is a well-known problem that can be solved in polynomial time by a dynamic programming algorithm. We provide a complete description of a polytope we associate with the lcs. The integrality of this polytope can be derived by showing that it is in fact the clique polytope of a perfect graph. The repetition-free version of the problem is known to be difficult. We also associate a polytope with this version and investigate its facial structure. We present some valid and facet-defining inequalities for this polytope and discuss separation procedures. Finally, we present some computational results of a branch and cut algorithm we have implemented for this problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adi, S.S., Braga, M., Fernandes, C.G., Ferreira, C.E., Martinez, F.H.V., Sagot, M.-F., Stefanes, M.A., Tjandraatmadja, C., Wakabayashi, Y.: Repetition-free longest common subsequence. In: Proc. IV Latin-American Algorithms, Graphs and Optimization Symposium (to appear) (2007)
Bonizzoni, P., Della Vedova, G., Dondi, R., Fertin, G., Vialette, S.: Exemplar longest common subsequence. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 622–629. Springer, Heidelberg (2006)
Chvátal, V.: On certain polytopes associated with graphs. J. Combinatorial Theory Ser. B 18, 138–154 (1975)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Fulkerson, D.R.: Anti-blocking polyhedra. J. Combinatorial Theory Ser. B 12, 50–71 (1972)
Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 169–197 (1981)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)
Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2(3), 253–267 (1972)
Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernandes, C.G., Ferreira, C.E., Tjandraatmadja, C., Wakabayashi, Y. (2008). A Polyhedral Investigation of the LCS Problem and a Repetition-Free Variant. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-540-78773-0_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78772-3
Online ISBN: 978-3-540-78773-0
eBook Packages: Computer ScienceComputer Science (R0)