On the Facets of Mixed Integer Programs with Two Integer Variables and Two Constraints | SpringerLink
Skip to main content

On the Facets of Mixed Integer Programs with Two Integer Variables and Two Constraints

  • Conference paper
LATIN 2008: Theoretical Informatics (LATIN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4957))

Included in the following conference series:

Abstract

In this paper we consider an infinite relaxation of the mixed integer linear program with two integer variables and two constraints, and we give a complete characterization of its facets. We then derive an analogous characterization of the facets of the underlying finite integer program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Cutting Planes from Two Rows of a Simplex Tableau. In: Proceedings of IPCO XII, Ithaca, New York, June 2007, pp. 1–15. (2007)

    Google Scholar 

  2. Balas, E.: Intersection Cuts - A New Type of Cutting Planes for Integer Programming. Operations Research 19, 19–39 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  3. Borozan, V., Cornuejols, G.: Minimal Valid Inequalities for Integer Constraints, technical report (July 2007)

    Google Scholar 

  4. Cook, W., Kannan, R., Schrijver, A.: Chvátal Closures for Mixed Integer Programming Problems. In: Mathematical Programming, vol. 47, pp. 155–174 (1990)

    Google Scholar 

  5. Dey, S.S., Richard, J.-P.P., Miller, L.A., Li, Y.: Extreme Inequalities for Infinite Group Problems, technical report (2006)

    Google Scholar 

  6. Gomory, R.E.: An Algorithm for Integer Solutions to Linear Programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  7. Gomory, R.E.: Thoughts about Integer Programming. In: 50th Anniversary Symposium of OR, Corner Polyhedra and Two-Equation Cutting Planes, George Nemhauser Symposium, University of Montreal, Atlanta (January 2007) (July 2007)

    Google Scholar 

  8. Gomory, R.E., Johnson, E.L.: Some Continuous Functions Related to Corner Polyhedra, In: Mathematical Programming, Part I. vol. 3, pp. 23–85 (1972)

    Google Scholar 

  9. Lovász, L.: Geometry of Numbers and Integer Programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp. 177–210. Kluwer, Dordrecht (1989)

    Google Scholar 

  10. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  11. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Chichester (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eduardo Sany Laber Claudson Bornstein Loana Tito Nogueira Luerbio Faria

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cornuéjols, G., Margot, F. (2008). On the Facets of Mixed Integer Programs with Two Integer Variables and Two Constraints. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78773-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78773-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78772-3

  • Online ISBN: 978-3-540-78773-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics