Abstract
The design of computer architectures requires the setting of multiple parameters on which the final performance depends. The number of possible combinations make an extremely huge search space. A way of setting such parameters is simulating all the architecture configurations using benchmarks. However, simulation is a slow solution since evaluating a single point of the search space can take hours. In this work we propose using artificial neural networks to predict the configurations performance instead of simulating all them. A prior model proposed by Ypek et al. [1] uses multilayer perceptron (MLP) and statistical analysis of the search space to minimize the number of training samples needed. In this paper we use evolutionary MLP and a random sampling of the space, which reduces the need to compute the performance of parameter settings in advance. Results show a high accuracy of the estimations and a simplification in the method to select the configurations we have to simulate to optimize the MLP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ipek, E., McKee, S.A., de Supinski, B.R., Schulz, M., Caruana, R.: Efficiently Exploring Architectural Design Spaces via Predictive Modeling. In: ASPLOS 2006, pp. 195–206 (2006)
Martonosi, M., Skadron, K.: NSF computer performance evaluation workshop (2001), http://www.princeton.edu/mrm/nsf_sim_final.pdf
Jacob, B.: A case for studying DRAM issues at the system level. IEEE Micro 23(4), 44–56 (2003)
Davis, J., Laudon, J., Olukotun, K.: Maximizing CMP throughput with mediocre cores. In: Proc. IEEE/ACM International Conference on Parallel Architectures and Compilation Techniques, pp. 51–62 (2005)
SaarTsechansky, M., Provost, F.: Active learning for class probability estimation and ranking. In: Proc. 17th International Joint Conference on Artificial Intelligence, pp. 911–920 (2001)
Castillo, P.A., Carpio, J., Merelo, J.J., Rivas, V., Romero, G., Prieto, A.: Evolving Multilayer Perceptrons. Neural Processing Letters 12(2), 115–127 (2000)
Castillo, P.A., Merelo, J.J., Rivas, V., Romero, G., Prieto, A.: G-Prop: Global Optimization of Multilayer Perceptrons using GAs. Neurocomputing 35(1-4), 149–163 (2000)
Castillo, P., Arenas, M., Merelo, J.J., Rivas, V., Romero, G.: Optimisation of Multilayer Perceptrons Using a Distributed Evolutionary Algorithm with SOAP. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 676–685. Springer, Heidelberg (2002)
Castillo, P., Merelo, J., Romero, G., Prieto, A., Rojas, I.: Statistical Analysis of the Parameters of a Neuro-Genetic Algorithm. IEEE Transactions on Neural Networks 13(6), 1374–1394 (2002)
Karkhanis, T., Smith, J.: A 1st-order superscalar processor model. In: Proc. 31st IEEE/ACM International Symposium on Computer Architecture, pp. 338–349 (2004)
Yi, J., Lilja, D., Hawkins, D.: A statistically-rigorous approach for improving simulation methodology. In: Proc. 9th IEEE Symposium on High Performance Computer Architecture, pp. 281–291 (2003)
Chow, K., Ding, J.: Multivariate analysis of Pentium Pro processor. In: Proceedings of Intel Software Developers Conference Track 1, Portland, Oregon, USA, October 27-29, 1997, pp. 84–104 (1997)
Cai, G., Chow, K., Nakanishi, T., Hall, J., Barany, M.: Multivariate prower/performance analysis for high performance mobile microprocessor design. In: Power Driven Microarchitecture Workshop (ISCA 1998), Barcelona (1998)
Eeckhout, L., Bell Jr, R., Stougie, B., De1Bosschere, K., John, L.: Control flow modeling in statistical simulation for accurate and efficient processor design studies. In: Proc. 31st IEEE/ACM International Symposium on Computer Architecture, pp. 350–336 (2004)
Phansalkar, A., Josi, A., Eeckhout, L., John, L.: Measuring program similarity: Experiments with SPEC CPU benchmark suites. In: Proc. IEEE International Symposium on Performance Analysis of Systems and Software, pp. 10–20 (2005)
Muttreja, A., Raghunathan, A., Ravi, S., Jha, N.: Automated energy/performance macromodeling of embedded software. In: Proc. 41st ACM/IEEE Design Automation Conference, pp. 99–102 (2004)
Lee, B., Brooks, D.: Accurate and efficient regression modeling for microarchitectural performance and power prediction. In: Proc. 12th ACM Symposium on Architectural Support for Programmming Languages and Operating Systems (ASPLOS-XII), San Jose, California, USA, pp. 185–194. ACM Press, New York (2006)
Oskin, M., Chong, F., Farrens, M.: HLS: Combining statistical and symbolic simulation to guide microprocessor design. In: Computer Architecture, 2000. Proc. 27th IEEE/ACM International Symposium on Computer Architecture (SIGARCH Comput. Archit. News), pp. 71–82. ACM Press, New York (2000)
Rapaka, V., Marculescu, D.: Pre-characterization free, efficient power/performance analysis of embedded and general purpose software applications. In: Proc. ACM/IEEE Design, Automation and Test in Europe Conference and Exposition, pp. 10504–10509 (2003)
Wunderlich, R., Wenish, T., Falsafi, B., Hoe, J.: SMARTS: Accelerating microarchitecture simulation via rigorous statistical sampling. In: Proc. 30th IEEE/ACM International Symposium on Computer Architecture (ISCA), San Diego, California, USA, June 9-11, 2003, vol. 8, pp. 84–95. IEEE Computer Society Press, Los Alamitos (2003)
Haskins, J., Skadron, K.: Minimal subset evaluation: Rapid warm-up for simulated hardware state. In: Proceedings of the International Conference on Computer Design: VLSI in Computers and Processors, September 23-26, 2001, p. 32. IEEE Computer Society Press, Washington (2001)
Renau, J.: SESC (2007), http://sesc.sourceforge.net/index.html
SPEC: Standard Performance Evaluation Corporation. SPEC CPU benchmark suite (2000), http://specbench.org/osg/cpu2000
Goldberg, D.: Zen and the art of genetic algorithms. In: Procs. of the 6th International Conference on Genetic Algorithms, ICGA 1995, pp. 80–85 (1995)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd Extended edn., Springer, Heidelberg (1996)
Fahlman, S.: Faster-Learning Variations on Back-Propagation: An Empirical Study. In: Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, San Francisco (1988)
Whitley, D.: The GENITOR Algorithm and Selection Presure: Why rank-based allocation of reproductive trials is best. In: Schaffer, J.D. (ed.) Procc of The 3th Int. Conf. on Genetic Algorithms, pp. 116–121. Morgan Kaufmann, San Francisco (1989)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castillo, P.A. et al. (2008). Architecture Performance Prediction Using Evolutionary Artificial Neural Networks. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2008. Lecture Notes in Computer Science, vol 4974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78761-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-78761-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78760-0
Online ISBN: 978-3-540-78761-7
eBook Packages: Computer ScienceComputer Science (R0)