Using Genetic Programming for Turing Machine Induction | SpringerLink
Skip to main content

Using Genetic Programming for Turing Machine Induction

  • Conference paper
Genetic Programming (EuroGP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4971))

Included in the following conference series:

  • 1060 Accesses

Abstract

Turing machines are playing an increasingly significant role in Computer Science domains such as bioinformatics. Instead of directly formulating a solution to a problem, a Turing machine which produces a solution algorithm is generated. The original problem is reduced to that of inducing an acceptor for a recursively enumerable language or a Turing machine transducer. This paper reports on a genetic programming system implemented to evolve Turing machine acceptors and transducers. Each element of the population is represented as a directed graph and graph crossover, mutation and reproduction are used to evolve each generation. The paper also presents a set of five acceptor and five transducer benchmark problems which can be used to test and compare different methodologies for generating Turing machines. The genetic programming system implemented evolved general solutions for all ten problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction – On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann Publishers, Inc., San Francisco (1998)

    MATH  Google Scholar 

  2. Lucas, S.M., Reynolds, T.: Learning DFA: Evolution versus Evidence Driven State Merging. In: The Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), pp. 351–358. IEEE Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  3. Lucas, S.M.: Evolving Finite State Transducers: Some Initial Explorations. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 130–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Luke, S., Hamahashi, S., Kitano, H.: Genetic Programming. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzan, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic Programming and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 2, pp. 1098–1105 (1999)

    Google Scholar 

  5. Pereria, F.B., Machado, P., Costa, E., Cardoso, A.: A Graph Based Crossover – A Case Study with the Busy Beaver Problem. In: Banzhaf, W., Daida, J. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1149–1155. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  6. Naidoo, A., Pillay, N.: The Induction of Finite Transducers Using Genetic Programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 371–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Tanomaru, J.: Evolving Turing Machines. In: Hao, J.K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 167–180. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  8. Vallejo, E.E., Ramos, F.: Evolving Turing Machines for Biosequence Recognition and Analysis. In: Miller, J.R., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 192–203. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael O’Neill Leonardo Vanneschi Steven Gustafson Anna Isabel Esparcia Alcázar Ivanoe De Falco Antonio Della Cioppa Ernesto Tarantino

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naidoo, A., Pillay, N. (2008). Using Genetic Programming for Turing Machine Induction. In: O’Neill, M., et al. Genetic Programming. EuroGP 2008. Lecture Notes in Computer Science, vol 4971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78671-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78671-9_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78670-2

  • Online ISBN: 978-3-540-78671-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics