Computational Intelligence in Electrophysiology: Trends and Open Problems | SpringerLink
Skip to main content

Computational Intelligence in Electrophysiology: Trends and Open Problems

  • Chapter
Applications of Computational Intelligence in Biology

Summary

This chapter constitutes mini-proceedings of the Workshop on Physiology Databases and Analysis Software that was a part of the Annual Computational Neuroscience Meeting CNS*2007 that took place in July 2007 in Toronto, Canada (http ://www.cnsorg.org). The main aim of the workshop was to bring together researchers interested in developing and using automated analysis tools and database systems for electrophysiological data. Selected discussed topics, including the review of some current and potential applications of Computational Intelligence (CI) in electrophysiology, database and electrophysiological data exchange platforms, languages, and formats, as well as exemplary analysis problems, are presented in this chapter. The authors hope that the chapter will be useful not only to those already involved in the field of electrophysiology, but also to CI researchers, whose interest will be sparked by its contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abeles M, Gat I (2001) Detecting precise firing sequences in experimental data. J Neurosci Methods 107:141-54

    Article  Google Scholar 

  2. Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of "effective connectivity". J Neurophysiol 61:900-17

    Google Scholar 

  3. Baker S, Baseler H, Klein S, Carney T (2006) Localizing sites of activation in primary visual cortex using visual-evoked potentials and functional magnetic resonance imaging. J Clinical Neurophys. 23(5):404-15

    Article  Google Scholar 

  4. Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, Wilson MA, Brown E (2004) A Bayesian decoding algorithm for analysis of information encoding in neural ensembles. Conf Proc IEEE Eng Med Biol Soc 6:4483-86

    Google Scholar 

  5. Berners-Lee T, Hall W, Hendler J, Shadbolt N, Weitzner DJ (2006) Creating a Science of the Web. Science 313(5788):769-71

    Article  Google Scholar 

  6. Bhalla US and Bower JM (1993) Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65

    Google Scholar 

  7. Bloom F, et al. (2003) Neuroscience Database Gateway. Available: http://ndg.sfn.org

  8. Bokil H, Pesaran B, Andersen RA, Mitra PP (2006) A method for detection and classification of events in neural activity. IEEE Transactions on Biomedical Engineering 53:1678-87

    Article  Google Scholar 

  9. Bokil H, Purpura K, Schofflen J-M, Thompson D, Pesaran B, Mitra PP (2006) Comparing spectra and coherences for groups of unequal size. J Neurosci Methods 159:337-45

    Article  Google Scholar 

  10. Bokil H, Tchernichovski O, Mitra PP (2006) Dynamic phenotypes: Time series analysis techniques for characterising neuronal and behavioral dynamics. Neuroinformatics Special Issue on Genotype-Phenotype Imaging in Neuroscience 4:119-28

    Google Scholar 

  11. Bower JM and Beeman D (1997) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. Springer

    Google Scholar 

  12. Brillinger DR (1992) Nerve cell spike train data analysis: A progression of technique. Journal of the American Statistical Association 87:260-71

    Article  Google Scholar 

  13. Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411-25

    Google Scholar 

  14. Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456-61

    Article  Google Scholar 

  15. Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:959-69

    Article  Google Scholar 

  16. Cannon RC and D'Alessandro G (2006) The ion channel inverse problem: neuroinformatics meets biophysics. PLoS Comput Biol 2(8):e91

    Article  Google Scholar 

  17. Carmena JM, Lebedev MA, Henriquez CS, Nicolelis MAL (2005) Stable ensemble performance with single-neuron variability during reaching movements in primates. J Neurosci 25(46):10712-16

    Article  Google Scholar 

  18. Chance FS, Nelson SB, Abbott LF (1998) Synaptic Depression and the Temporal Response Characteristics of V1 Cells. J Neurosci 18:4785-99

    Google Scholar 

  19. Chapin JK, Nicolelis MA (1999) Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. J Neurosci Methods 94:121-40

    Article  Google Scholar 

  20. Clancy CE and Rudy Y (2002) Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208-13

    Article  Google Scholar 

  21. Clancy CE and Kass RS (2004) Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 86:2606-14

    Article  Google Scholar 

  22. Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinf. 5(2):96-104

    Article  Google Scholar 

  23. Crowe DA, Averbeck BB, Chafee MV, Georgopoulos AP (2005) Dynamics of parietal neural activity during spatial cognitive processing. Neuron 47:885-91

    Article  Google Scholar 

  24. Czanner G, Grun S, Iyengar S (2005) Theory of the snowake plot and its relations to higher-order analysis methods. Neural Comput 17:1456-79

    Article  MATH  Google Scholar 

  25. Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803-18

    Google Scholar 

  26. Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24

    Article  Google Scholar 

  27. Fee MS, Mitra PP, Kleinfeld D (1996) Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods 69:175-88

    Article  Google Scholar 

  28. Fellous J-M, Rudolph M, Destexhe A, Sejnowski TJ (2003) Variance detection and gain modulation in an in-vitro model of in-vivo activity. Neuroscience 122:811-29

    Article  Google Scholar 

  29. Fellous JM, Tiesinga PH, Thomas PJ, Sejnowski TJ (2004) Discovering spike patterns in neuronal responses. J Neurosci 24:2989-3001

    Article  Google Scholar 

  30. Gardner D, Abato M, Knuth KH, DeBellis R, Erde SM (2001) Dynamic publication model for neurophysiology databases. Philos Trans R Soc Lond B Biol Sci 356(1412):1229-47

    Article  Google Scholar 

  31. Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner EP (2001) Common data model for neuroscience data and data model exchange. J Am Med Inform Assoc 8:17-33

    Google Scholar 

  32. Gardner D (2004) Neurodatabase.org: networking the microelectrode. Nat Neurosci 7(5):486-87

    Article  Google Scholar 

  33. Gardner D (2004) personal communication

    Google Scholar 

  34. Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54(2):219-35

    Article  Google Scholar 

  35. Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001) Towards NeuroML: model description methods for collaborative modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 356(1412):1209-1228

    Article  Google Scholar 

  36. Goddard NH, Cannon RC, Howell FW (2003) Axiope tools for data management and data sharing. Neuroinformatics 1(3):271-84

    Article  Google Scholar 

  37. Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol 78:1199-211

    Google Scholar 

  38. Golowasch J, Abbott LF, Marder E (1999) Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J Neurosci 19(20):RC33

    Google Scholar 

  39. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87(2):1129-31

    Google Scholar 

  40. Gonzalez-Heydrich J, Steingard RJ, Putnam F, Beardslee W, Kohane IS (1999) Using `off the shelf' computer programs to mine additional insights from published data: diurnal variation in potency of ACTH stimulation of cortisol secretion revealed. Comput Methods Programs Biomed 58(3):227-38

    Article  Google Scholar 

  41. Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I(to1) in shaping action potential morphology and duration. Circ Res 87:1026-1033

    Google Scholar 

  42. Grun S, Diesmann M, Aertsen A (2002) Unitary events in multiple singleneuron spiking activity: I. Detection and significance. Neural Comput 14:43-80

    Article  Google Scholar 

  43. Grun S, Diesmann M, Aertsen A (2002) Unitary events in multiple singleneuron spiking activity: II. Nonstationary data. Neural Comput 14:81-119

    Article  Google Scholar 

  44. Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G (2003) Organization of cell assemblies in the hippocampus. Nature 424:552-6

    Article  Google Scholar 

  45. Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86(3):1351-64

    Google Scholar 

  46. Hines ML and Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179-209

    Article  Google Scholar 

  47. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A database to support computational neuroscience. J Comput Neurosci 17(1):7-11

    Article  Google Scholar 

  48. Hodgkin AL and Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500-544

    Google Scholar 

  49. Hulata E, Segev R, Ben-Jacob E (2002) A method for spike sorting and detection based on wavelet packets and Shannon's mutual information. J Neurosci Methods 117(1):1-12

    Article  Google Scholar 

  50. Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26(50):12921-42

    Article  Google Scholar 

  51. Huyser K and van der Laan J (1992) Data Thief v.1.0.8. Available:http://www.datathief.org/

  52. Iglesias J, Villa AE (2007) Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks. Biosystems 89:287-93

    Article  Google Scholar 

  53. Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304(5670):559-64

    Article  Google Scholar 

  54. Jackson JC, Johnson A, Redish AD (2006) Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience. J Neurosci 26:12415-26

    Article  Google Scholar 

  55. Kennedy DN and Haselgrove C (2006) The internet analysis tools registry: a public resource for image analysis. Neuroinformatics 4(3):263-70

    Article  Google Scholar 

  56. Kuzmick V, Lafferty J, Serfass A, Szperka D, Zale B, Nagvajara P, Johnson J, Moxon K (2001) Novel epileptic seizure detection system using multiple single neuron recordings. Conf Proc IEEE 27th Ann Northeast Bioeng, pp. 7–8

    Google Scholar 

  57. Laubach M, Shuler M, Nicolelis MA (1999) Independent component analyses for quantifying neuronal ensemble interactions. J Neurosci Methods 94:141-54

    Article  Google Scholar 

  58. Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26(13):3567-83

    Article  Google Scholar 

  59. Lipa P, Tatsuno M, Amari S, McNaughton BL, Fellous JM (2006) A novel analysis framework for characterizing ensemble spike patterns using spike train clustering and information geometry. Society for Neuroscience Annual Meeting. Atlanta, GA, pp. 371-76

    Google Scholar 

  60. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy Of Sciences of The United States of America 96:15222-27

    Article  Google Scholar 

  61. Loader C (1999) Local Regression and Likelihood. Springer 62. LyttonWW(2006) Neural query system - data-mining from within the neuron simulator. Neuroinformatics 4(2):163-75

    MathSciNet  Google Scholar 

  62. MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811-23

    Article  Google Scholar 

  63. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613-7624

    Google Scholar 

  64. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-6

    Article  Google Scholar 

  65. Mamlouk AM, Sharp H, Menne KML, Hofmann UG, Martinetz T (2005) Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing, 65-66:275-82

    Article  Google Scholar 

  66. Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2):153-160

    Article  MathSciNet  Google Scholar 

  67. Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E (2000) Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput 12:2621-53

    Article  Google Scholar 

  68. Migliore M and Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3(5):362-70

    Article  Google Scholar 

  69. Migliore M and Shepherd GM (2005) Opinion: an integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 6(10):810-18

    Article  Google Scholar 

  70. Mitra PP and Pesaran B (1999) Analysis of dynamic brain imaging data. Biophysical J 76:691-708

    Article  Google Scholar 

  71. Mokeichev A, Okun M, Barak O, Katz Y, Ben-Shahar O, Lampl I (2007) Stochastic emergence of repeating cortical motifs in spontaneous membrane potential uctuations in vivo. Neuron 53:413-25

    Article  Google Scholar 

  72. Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497-507

    Google Scholar 

  73. Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion cells act largely as independent encoders. Nature 411:698-701

    Article  Google Scholar 

  74. Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J Neurophysiol 79:1450-60

    Google Scholar 

  75. Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis. Cambridge University Press

    Google Scholar 

  76. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience 5:805-11

    Article  Google Scholar 

  77. Pittendrigh S and Jacobs G (2003) NeuroSys: a semistructured laboratory database. Neuroinformatics 1(2):167-76

    Article  Google Scholar 

  78. Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998-4015

    Article  Google Scholar 

  79. Qi W and Crook S (2004) Tools for neuroinformatic data exchange: An XML application for neuronal morphology data. Neurocomp 58-60C:1091-5

    Article  Google Scholar 

  80. Rall W (1977) Core Conductor theory and cable properties of neurons. Handbook of Physiology, Sec. 1, The Nervous System, vol. 1, Bethesda, MD: Am Physiol Soc, pp. 39-97

    Google Scholar 

  81. Reinagel P, Reid RC (2002) Precise firing events are conserved across neurons. J Neurosci 22:6837-41

    Google Scholar 

  82. Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13:4609-21

    Google Scholar 

  83. Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. The MIT Press

    Google Scholar 

  84. Roth A and Hausser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445-72

    Article  Google Scholar 

  85. Rudy Y, Silva JR (2006) Computational biology in the study of cardiac ion channels and cell electrophysiology. Quart Rev Biophysics 39(1):57-116

    Article  Google Scholar 

  86. Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154(1-2):204-24

    Article  Google Scholar 

  87. Sakmann B and Neher E (1995) Single-Channel Recording (2nd ed). Plenum Press

    Google Scholar 

  88. Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53

    Article  Google Scholar 

  89. Santhanam G, Sahani M, Ryu S, Shenoy K (2004) An extensible infrastructure for fully automated spike sorting during online experiments. Conf Proc IEEE Eng Med Biol Soc, pp. 4380–4

    Google Scholar 

  90. Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated k(+) channels. Biophys J 84:3508-28

    Google Scholar 

  91. Schaefer AT, Helmstaedter M, Schmitt AC, Bar-Yehuda D, Almog M, Ben-Porat H, Sakmann B, et-al (2007) Dendritic voltage-gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats. J Physiol 579:737-52

    Article  Google Scholar 

  92. Schreiber S, Fellous J-M, Tiesinga PH, Sejnowski TJ (2003) A new correlationbased measure of spike timing reliability. Neurocomputing 52-54:925-31

    Google Scholar 

  93. Surkis A, Peskin CS, Tranchina D, Leonard CS (1998) Recovery of cable properties through active and passive modeling of subthreshold membrane responses from laterodorsal tegmental neurons. J Neurophysiol 80(5):2593-607

    Google Scholar 

  94. Suzuki N, Takahata M, Sato K (2002) Oscillatory current responses of olfactory receptor neurons to odorants and computer simulation based on a cyclic AMP transduction model. Chem Senses 27:789-801

    Article  Google Scholar 

  95. Taylor AL, Hickey TJ, Prinz AA, Marder E (2006) Structure and visualization of high-dimensional conductance spaces. J Neurophysiol 96:891-905

    Article  Google Scholar 

  96. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7):2963-76

    Google Scholar 

  97. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP (2000) A procedure for an automated measurement of song similarity. Animal Behaviour 59:1167-76

    Article  Google Scholar 

  98. Thomson DJ, Chave AD (1991) Jacknifed error estimates for spectra, coherences, and transfer functions. In: Advances in spectrum analysis and array processing (Haykin S, ed), pp. 58-113. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  99. Tóth TI and Crunelli V (2001) Estimation of the activation and kinetic properties of INa and IK from the time course of the action potential. J Neurosci Meth 111(2):111-26

    Article  Google Scholar 

  100. Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, et-al. (2005) A single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. J Neurophysiol 93(4):2194-232

    Article  Google Scholar 

  101. Vanier MC and Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7(2):149-71

    Article  Google Scholar 

  102. Venkataramanan L and Sigworth FJ (2002) Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity. Biophys J 82:1930-42

    Article  Google Scholar 

  103. Weaver CM and Wearne SL (2006) The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing 69:1053-57

    Article  Google Scholar 

  104. Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733-36

    Article  Google Scholar 

  105. Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 79:1017-44

    Google Scholar 

  106. Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140-43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Günay, C. et al. (2008). Computational Intelligence in Electrophysiology: Trends and Open Problems. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Applications of Computational Intelligence in Biology. Studies in Computational Intelligence, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78534-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78534-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78533-0

  • Online ISBN: 978-3-540-78534-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics