Fuzzy-Rational Betting on Sport Games with Interval Probabilities | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 109))

  • 514 Accesses

Summary

The paper discusses betting on sport events by a fuzzy-rational decision maker, who elicits interval subjective probabilities, which may be conveniently described by intuitionistic fuzzy sets. Finding the optimal bet for this decision maker is modeled and solved using fuzzy-rational generalized lotteries of II type. Approximation of interval probabilities is performed with the use of four criteria under strict uncertainty. Four expected utility criteria are formulated on that basis. The scheme accounts for the interval character of probability elicitation results. Index Terms. – generalized lotteries of II type, intuitionistic fuzzy sets, fuzzy rationality, interval probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez DA (2006) On the calculation of the bounds of probability of events using infinite random sets, International Journal of Approximate Reasoning 43: 241–267

    Article  MATH  MathSciNet  Google Scholar 

  2. Atanassov K (1999) Intuitionistic fuzzy sets. Berlin Heidelberg New York: Springer

    MATH  Google Scholar 

  3. Atanassov K (2002) Elements of intuitionistic fuzzy logics. Part II: Intuitionistic fuzzy modal logics. Advanced Studies on Contemporary Mathematics, 5(1): 1–13.

    MATH  MathSciNet  Google Scholar 

  4. Augustin Th (2001) On decision making under ambiguous prior and sampling information. In: de Cooman G, Fine T, Moral S, Seidenfeld T. (eds.): ISIPTA ‘01: Proceedings of the Second International Symposium on Imprecise Probabilities and their Applications. Cornell University, Ithaca (N.Y.), Shaker, Maastricht, 9–16

    Google Scholar 

  5. Augustin Th (2005) Generalized basic probability assignments. International Journal of General Systems, 34(4): 451–463

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernstein L (1996) Against the gods – the remarkable story of risk. Wiley, USA

    Google Scholar 

  7. De Finetti B (1937) La prevision: ses lois logiques, ses sorces subjectives. In: Annales de l’Institut Henri Poincare, 7: 1–68. Translated in Kyburg HE Jr., Smokler HE (eds.) (1964) Studies in subjective probability. Wiley, New York, 93–158

    Google Scholar 

  8. De Groot MH (1970) Optimal statistical decisions. McGraw-Hill

    Google Scholar 

  9. Fine TL (1973) Theories of probability. Academic Press

    Google Scholar 

  10. Forsythe GE, Malcolm A, Moler CB (1977) Computer methods for mathematical computations. Prentice Hall

    Google Scholar 

  11. French S. (1993) Decision theory: an introduction to the mathematics of rationality. Ellis Horwood.

    Google Scholar 

  12. French S, Insua DR (2000) Statistical decision theory. Arnold, London

    Google Scholar 

  13. Gatev G (1995) Interval analysis approach and algorithms for solving network and dynamic programming problems under parametric uncertainty. Proc. of the Technical University-Sofia, 48(4): 343–350, Electronics, Communication, Informatics, Automatics

    Google Scholar 

  14. Gould NIM, Leyffer S (2003) An introduction to algorithms for nonlinear optimization. In Blowey JF, Craig AW, Shardlow, Frontiers in numerical analysis. Springer, Berlin Heidelberg New York, 109–197

    Google Scholar 

  15. Grunwald PD, Dawid AP (2002) Game theory, maximum entropy, minimum discrepancy, and robust bayesian decision theory. Tech. Rep. 223, University College London

    Google Scholar 

  16. Levi I (1999) Imprecise and indeterminate probabilities. Proc. First International Symposium on Imprecise Probabilities and Their Applications, University of Ghent, Ghent, Belgium, 65–74.

    Google Scholar 

  17. Machina M, Schmeidler D (1992) A more rrobust definition of subjective probability. Econometrica, 60(4): 745–780

    Article  MATH  MathSciNet  Google Scholar 

  18. Moore R (1979) Methods and applications of interval analysis. SIAM, Philadelphia

    MATH  Google Scholar 

  19. von Neumann J, Morgenstern O (1947) Theory of games and economic behavior. Second Edition. Princeton University Press, Princeton, NJ

    Google Scholar 

  20. Nikolova ND (2006) Two criteria to rank fuzzy rational alternatives. Proc. International Conference on Automatics and Informatics, 3–6 October, Sofia, Bulgaria, 283–286

    Google Scholar 

  21. Nikolova ND (2007) Quantitative fuzzy-rational decision analysis, PhD Dissertation, Technical University-Varna (in Bulgarian)

    Google Scholar 

  22. Nikolova ND, Dimitrakiev D, Tenekedjiev K (2004) Fuzzy rationality in the elicitation of subjective probabilities. Proc. Second International IEEE Conference on Intelligent Systems IS’2004, Varna, Bulgaria, III: 27–31

    Google Scholar 

  23. Nikolova ND, Shulus A, Toneva D, Tenekedjiev K (2005) Fuzzy rationality in quantitative decision analysis. Journal of Advanced Computational Intelligence and Intelligent Informatics, 9(1): 65–69

    Google Scholar 

  24. Press WH, Teukolski SA, Vetterling WT, Flannery BP (1992) Numerical recipes – the art of scientific computing, Cambridge University Press

    Google Scholar 

  25. Raiffa H (1968) Decision analysis. Addison Wesley

    Google Scholar 

  26. Satia JK, Lave RE, Lave Jr (1973) Markovian decision processes with uncertain transition probabilities. Operations Research, 21(3): 728–740

    Article  MATH  MathSciNet  Google Scholar 

  27. Schervish M, Seidenfeld T, Kadane J, Levi JI (2003) Extensions of expected utility theory and some limitations of pairwise comparisons. In Bernard JM, Seidenfeld T, Zaffalon M (eds.): ISIPTA 03: Proc. of the Third International Symposium on Imprecise Probabilities and their Applications, Lugano. Carleton Scientific, Waterloo, 496–510.

    Google Scholar 

  28. Shafer G, Gillett P, Scherl R (2003) A new understanding of subjective probability and its generalization to lower and upper prevision. International Journal of Approximate Reasoning, (33): 1–49

    Google Scholar 

  29. Szmidt E, Kacprzyk J (1999) Probability of intuitionistic fuzzy events and their application in decision making, Proc. EUSFLAT-ESTYLF Joint Conference, September 22–25, Palma de Majorka, Spain, 457–460

    Google Scholar 

  30. Tenekedjiev K (2006) Hurwiczα expected utility criterion for decisions with partially quantified uncertainty, In First International Workshop on Intuitionistic Fuzzy Sets, Generalized Nets and Knowledge Engineering, 2–4 September, London, UK, 2006, pp. 56–75.

    Google Scholar 

  31. Tenekedjiev K (2007) Triple bisection algorithms for 1-D utility elicitation in the case of monotonic preferences. Advanced Studies in Contemporary Mathematics, 14(2): 259–281.

    MATH  MathSciNet  Google Scholar 

  32. Tenekedjiev K, Nikolova ND (2007) Ranking discrete outcome alternatives with partially quantified uncertainty. International Journal of General Systems, 37(2): 249–274

    Article  MathSciNet  Google Scholar 

  33. Tenekedjiev K, Nikolova ND, Kobashikawa C, Hirota K (2006) Conservative betting on sport games with intuitionistic fuzzy described uncertainty. Proc. Third International IEEE Conference on Intelligent Systems IS’2006, Westminster, UK, 747–754

    Google Scholar 

  34. The MathWorks (2007) MATLAB optimization toolbox 3 – user’s guide. The MathWorks Inc.

    Google Scholar 

  35. Vidakovic B (2000) Γ-minimax: a paradigm for conservative robust Bayesians. In Insua DR, Ruggeri F (eds.) Robust bayesian analysis, 241–259

    Google Scholar 

  36. Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman and Hall, London.

    MATH  Google Scholar 

  37. Zaffalon M, Wesnes K, Petrini O (2003) Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data, Artificial Intelligence in Medicine, 29(1–2): 61–79

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tenekedjiev, K.I., Nikolova, N.D., Kobashikawa, C.A., Hirota, K. (2008). Fuzzy-Rational Betting on Sport Games with Interval Probabilities. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77623-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77621-5

  • Online ISBN: 978-3-540-77623-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics