On the Undecidability of the Tiling Problem | SpringerLink
Skip to main content

On the Undecidability of the Tiling Problem

  • Conference paper
SOFSEM 2008: Theory and Practice of Computer Science (SOFSEM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4910))

Abstract

The tiling problem is the decision problem to determine if a given finite collection of Wang tiles admits a valid tiling of the plane. In this work we give a new proof of this fact based on tiling simulations of certain piecewise affine transformations. Similar proof is also shown to work in the hyperbolic plane, thus answering an open problem posed by R.M.Robinson 1971 [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berger, R.: Undecidability of the Domino Problem. Memoirs of the American Mathematical Society 66, 72 (1966)

    MathSciNet  Google Scholar 

  2. Blondel, V., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.: Deciding stability and mortality of piecewise affine dynamical systems. Theoretical Computer Science 255, 687–696 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Goodman-Strauss, C.: A strongly aperiodic set of tiles in the hyperbolic plane. Inventiones Mathematicae 159, 119–132 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hooper, P.K.: The undecidability of the Turing machine immortality problem. The Journal of Symbolic Logic 31, 219–234 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kari, J.: The Tiling Problem Revisited (extended abstract). In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 72–79. Springer, Heidelberg (2007)

    Google Scholar 

  6. Kari, J.: A small aperiodic set of Wang tiles. Discrete Mathematics 160, 259–264 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theoretical Computer Science 132, 113–128 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Margenstern, M.: About the domino problem in the hyperbolic plane, a new solution. Manuscript, 109 (2007) (and also see arXiv:cs/0701096, same title), http://www.lita.univ-metz.fr/~margens/

  9. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathematicae 12, 177–209 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  10. Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Inventiones Mathematicae 44, 259–264 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Viliam Geffert Juhani Karhumäki Alberto Bertoni Bart Preneel Pavol Návrat Mária Bieliková

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kari, J. (2008). On the Undecidability of the Tiling Problem. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77566-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77565-2

  • Online ISBN: 978-3-540-77566-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics