How Much Information about the Future Is Needed? | SpringerLink
Skip to main content

How Much Information about the Future Is Needed?

  • Conference paper
SOFSEM 2008: Theory and Practice of Computer Science (SOFSEM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4910))

  • 1430 Accesses

Abstract

We propose a new way of characterizing the complexity of online problems. Instead of measuring the degradation of output quality caused by the ignorance of the future we choose to quantify the amount of additional global information needed for an online algorithm to solve the problem optimally. In our model, the algorithm cooperates with an oracle that can see the whole input. We define the advice complexity of the problem to be the minimal number of bits (normalized per input request, and minimized over all algorithm-oracle pairs) communicated between the algorithm and the oracle in order to solve the problem optimally. Hence, the advice complexity measures the amount of problem-relevant information contained in the input.

We introduce two modes of communication between the algorithm and the oracle based on whether the oracle offers an advice spontaneously (helper) or on request (answerer). We analyze the Paging and DiffServ problems in terms of advice complexity and deliver tight bounds in both communication modes.

Supported by APVV-0433-06 and VEGA 1/3106/06.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Online algorithms: A survey. Mathematical Programming 97, 3–26 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Belady, L.A.: A study of replacement algorithms for virtual storage computers. IBM Systems Journal 5, 78–101 (1966)

    Article  Google Scholar 

  3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. In: Proc. 23rd Annual ACM Symp. on Theory of Computing, pp. 249–259 (1991)

    Google Scholar 

  6. Boyar, J., Favrholdt, L.M.: The Relative Worst Order Ratio for Online Algorithms. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 58–69. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Dobrev, S., Královič, R., Pardubská, D.: How Much Information About the Future is Needed?, Technical report TR-2007-007, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, http://kedrigern.dcs.fmph.uniba.sk/reports/display.php?id=22

  8. Englert, M., Westermann, M.: Lower and Upper Bounds on FIFO Buffer Management in QoS Switches. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 352–363. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive Paging Algorithms. J. Algorithms 12, 685–699 (1991)

    Article  MATH  Google Scholar 

  10. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: information sensitivity of graph coloring. In: Arge, L., et al. (eds.) ICALP 2007. LNCS, vol. 4596, Springer, Heidelberg (2007)

    Google Scholar 

  11. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication problems. In: PODC 2006. Proc. 25th Ann. ACM Symposium on Principles of Distributed Computing, pp. 179–187 (2006)

    Google Scholar 

  12. Graham, R.L.: Bounds for Certain Multiprocessing Anomalies. Bell Systems Technical Journal 45, 1563–1581 (1966)

    Google Scholar 

  13. Irany, S., Karlin, A.R.: Online Computation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 521–564. PWS Publishing Company (1997)

    Google Scholar 

  14. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with locality of reference. In: Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 228–236 (1992)

    Google Scholar 

  15. Kalyanasundaram, B., Pruhs, K.: Speed is as Powerful as Clairvoyance. In: IEEE Symposium on Foundations of Computer Science, pp. 214–221 (1995)

    Google Scholar 

  16. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive Snoopy Caching. Algorithmica 3, 79–119 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karp, R.: On-line algorithms versus off-line algorithms: how much is it worth to know the future? In: Proc. IFIP 12th World Computer Congress, vol. 1, pp. 416–429 (1992)

    Google Scholar 

  18. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. In: Proc. 34th Annual Symp. on Foundations of Computer Science, pp. 394–400 (1994)

    Google Scholar 

  19. Lotker, Z., Patt-Shamir, B.: Nearly Optimal FIFO Buffer Management for DiffServ. In: PODC 2002, pp. 134–143 (2002)

    Google Scholar 

  20. Manasse, M.M., McGeoch, L.A., Sleator, D.D.: Competitive Algorithms for Online Problems. In: Proc. 20th Annual Symposium on the Theory of Computing, pp. 322–333 (1988)

    Google Scholar 

  21. Philips, C.A., Stein, C., Torng, E., Wein, J.: Optimal Time-Critical Scheduling via Resource Augmentation. In: Proc. 29th Annual ACM Symp on the Theory of Computing, pp. 140–149 (1997)

    Google Scholar 

  22. O’Reilly, U.M., Santoro, N.: The Expressiveness of Silence: Tight Bounds for Synchronous Communication of Information Using Bits and Silence. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 321–332. Springer, Heidelberg (1993)

    Google Scholar 

  23. Raghavan, P.: A statistical adversary for on-line algorithms. In: On-Line Algorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 79–83 (1991)

    Google Scholar 

  24. Sleator, D.D., Tarjan, R.E.: Amortized Efficiency of Update and Paging Rules. Comm. of the ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  25. Torng, E.: A Unified Analysis of Paging and Caching. Algorithmica 20, 175–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica 11, 525–541 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Viliam Geffert Juhani Karhumäki Alberto Bertoni Bart Preneel Pavol Návrat Mária Bieliková

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrev, S., Královič, R., Pardubská, D. (2008). How Much Information about the Future Is Needed?. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77566-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77565-2

  • Online ISBN: 978-3-540-77566-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics