Abstract
We propose a new way of characterizing the complexity of online problems. Instead of measuring the degradation of output quality caused by the ignorance of the future we choose to quantify the amount of additional global information needed for an online algorithm to solve the problem optimally. In our model, the algorithm cooperates with an oracle that can see the whole input. We define the advice complexity of the problem to be the minimal number of bits (normalized per input request, and minimized over all algorithm-oracle pairs) communicated between the algorithm and the oracle in order to solve the problem optimally. Hence, the advice complexity measures the amount of problem-relevant information contained in the input.
We introduce two modes of communication between the algorithm and the oracle based on whether the oracle offers an advice spontaneously (helper) or on request (answerer). We analyze the Paging and DiffServ problems in terms of advice complexity and deliver tight bounds in both communication modes.
Supported by APVV-0433-06 and VEGA 1/3106/06.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albers, S.: Online algorithms: A survey. Mathematical Programming 97, 3–26 (2003)
Belady, L.A.: A study of replacement algorithms for virtual storage computers. IBM Systems Journal 5, 78–101 (1966)
Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)
Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. In: Proc. 23rd Annual ACM Symp. on Theory of Computing, pp. 249–259 (1991)
Boyar, J., Favrholdt, L.M.: The Relative Worst Order Ratio for Online Algorithms. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 58–69. Springer, Heidelberg (2003)
Dobrev, S., Královič, R., Pardubská, D.: How Much Information About the Future is Needed?, Technical report TR-2007-007, Faculty of Mathematics, Physics, and Informatics, Comenius University, Bratislava, http://kedrigern.dcs.fmph.uniba.sk/reports/display.php?id=22
Englert, M., Westermann, M.: Lower and Upper Bounds on FIFO Buffer Management in QoS Switches. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 352–363. Springer, Heidelberg (2006)
Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive Paging Algorithms. J. Algorithms 12, 685–699 (1991)
Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: information sensitivity of graph coloring. In: Arge, L., et al. (eds.) ICALP 2007. LNCS, vol. 4596, Springer, Heidelberg (2007)
Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication problems. In: PODC 2006. Proc. 25th Ann. ACM Symposium on Principles of Distributed Computing, pp. 179–187 (2006)
Graham, R.L.: Bounds for Certain Multiprocessing Anomalies. Bell Systems Technical Journal 45, 1563–1581 (1966)
Irany, S., Karlin, A.R.: Online Computation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 521–564. PWS Publishing Company (1997)
Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with locality of reference. In: Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 228–236 (1992)
Kalyanasundaram, B., Pruhs, K.: Speed is as Powerful as Clairvoyance. In: IEEE Symposium on Foundations of Computer Science, pp. 214–221 (1995)
Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive Snoopy Caching. Algorithmica 3, 79–119 (1988)
Karp, R.: On-line algorithms versus off-line algorithms: how much is it worth to know the future? In: Proc. IFIP 12th World Computer Congress, vol. 1, pp. 416–429 (1992)
Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. In: Proc. 34th Annual Symp. on Foundations of Computer Science, pp. 394–400 (1994)
Lotker, Z., Patt-Shamir, B.: Nearly Optimal FIFO Buffer Management for DiffServ. In: PODC 2002, pp. 134–143 (2002)
Manasse, M.M., McGeoch, L.A., Sleator, D.D.: Competitive Algorithms for Online Problems. In: Proc. 20th Annual Symposium on the Theory of Computing, pp. 322–333 (1988)
Philips, C.A., Stein, C., Torng, E., Wein, J.: Optimal Time-Critical Scheduling via Resource Augmentation. In: Proc. 29th Annual ACM Symp on the Theory of Computing, pp. 140–149 (1997)
O’Reilly, U.M., Santoro, N.: The Expressiveness of Silence: Tight Bounds for Synchronous Communication of Information Using Bits and Silence. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 321–332. Springer, Heidelberg (1993)
Raghavan, P.: A statistical adversary for on-line algorithms. In: On-Line Algorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 79–83 (1991)
Sleator, D.D., Tarjan, R.E.: Amortized Efficiency of Update and Paging Rules. Comm. of the ACM 28(2), 202–208 (1985)
Torng, E.: A Unified Analysis of Paging and Caching. Algorithmica 20, 175–200 (1998)
Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica 11, 525–541 (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dobrev, S., Královič, R., Pardubská, D. (2008). How Much Information about the Future Is Needed?. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-77566-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77565-2
Online ISBN: 978-3-540-77566-9
eBook Packages: Computer ScienceComputer Science (R0)