Abstract
Filter models and (solutions of) recursive domain equations are two different ways of constructing lambda models. Many partial results have been shown about the equivalence between these two constructions (in some specific cases). This paper deepens the connection by showing that the equivalence can be shown in a general framework. We will introduce the class of disciplined intersection type theories and its four subclasses: natural split, lazy split, natural equated and lazy equated. We will prove that each class corresponds to a different recursive domain equation. For this result, we are extracting the essence of the specific proofs for the particular cases of intersection type theories and making one general construction that encompasses all of them. This general approach puts together all these results which may appear scattered and sometimes with incomplete proofs in the literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Ong, L.C.: Full abstraction in the Lazy Lambda Calculus. Information and Computation 105, 159–267 (1993)
Alessi, F.: Strutture di tipi, teoria dei domini, e modelli del λ-calcolo. PhD Thesis. University of Turin (1991)
Alessi, F., Dezani-Ciancaglini, M., Honsell, F.: Inverse Limit Models as Filter Models. In: Proceedings of HOR 2004, pp. 3–25 (2004)
Barendregt, H.P.: The Lambda Calculus: Its syntax and semantics. North-Holland Publishing co., Amsterdam (1984)
Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. J. Symbolic Logic 48(4), 931–940 (1983)
Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory for the λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693 (1980)
Coppo, M., Dezani-Ciancaglini, M., Longo, G.: Applicative information systems. In: Protasi, M., Ausiello, G. (eds.) CAAP 1983. LNCS, vol. 159, pp. 35–64. Springer, Heidelberg (1983)
Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G.: Extended type structures and filter lambda models. In: Logic Colloquium 1982, pp. 241–262. North-Holland, Amsterdam (1984)
Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type theories, normal forms and D ∞ lambda models. Information and Compuation 72(2), 85–116 (1987)
Dezani-Ciancaglini, M., Ghilezan, S., Likavec, S.: Behavioural inverse limit models. Theoret. Comput. Sci. 316(1–3), 49–74 (2004)
Dezani-Ciancaglini, M., Honsell, F., Alessi, F.: A complete characterization of complete intersection-type preorders. ACM TOCL 4(1), 120–146 (2003)
Dezani-Ciancaglini, M., Honsell, F., Motohama, Y.: Compositional characterization of λ-terms using intersection types. Theoret. Comput. Sci. 304(3), 459–495 (2005)
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, D.J., Mislove, M.W., Scott, D.: Continuous lattices and domains. Cambridge University Press, Cambridge (2003)
Hindley, R., Longo, G.: Lambda calculus models and extensionality. Z. Math Logik Grundlag. Math 26(4), 289–310 (1980)
Honsell, F., Ronchi Della Rocca, S.: An approximation theorem for topological lambda models and the topological incompleteness of lambda calculus. J. Comput. System Sci. 45(1), 49–75 (1992)
Park, D.: The Y-combinator in Scott’s λ-calculus models (revised version). Theory of Computation Report 13, Department of Computer Science, University of Warick (1976)
Plotikin, G.: Set-Theoretic and Other Elementary Models of the λ-Calculus. Theoretical Computer Science 121, 351–409 (1993)
Ronchi della Rocca, S., Paolini, L.: The Parametric Lambda Calculus. A Metamodel for Computation. In: Texts in Theoretical Computer Science. An EACTS Series, Springer, Heidelberg (2004)
Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 577–613. Springer, Heidelberg (1982)
Smyth, M.B., Plotkin, G.D.: The category-theoretic solution of recursive domain equations. SIAM Journal on Computing 11(4), 761–783 (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alessi, F., Severi, P. (2008). Recursive Domain Equations of Filter Models . In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-77566-9_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77565-2
Online ISBN: 978-3-540-77566-9
eBook Packages: Computer ScienceComputer Science (R0)