Abstract
Intrusion Detection Systems (IDS’s) monitor the traffic in computer networks for detecting suspect activities. Connectionist techniques can support the development of IDS’s by modeling ‘normal’ traffic. This paper presents the application of some unsupervised neural methods to a packet dataset for the first time. This work considers three unsupervised neural methods, namely, Vector Quantization (VQ), Self-Organizing Maps (SOM) and Auto-Associative Back-Propagation (AABP) networks. The former paradigm proves quite powerful in supporting the basic space-spanning mechanism to sift normal traffic from anomalous traffic. The SOM attains quite acceptable results in dealing with some anomalies while it fails in dealing with some others. The AABP model effectively drives a nonlinear compression paradigm and eventually yields a compact visualization of the network traffic progression.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Laskov, P., Dussel, P., Schafer, C., Rieck, K.: Learning Intrusion Detection: Supervised or Unsupervised? In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 50–57. Springer, Heidelberg (2005)
Liao, Y., Vemuri, V.R.: Use of K-nearest Neighbor Classifier for Intrusion Detection. Comput. Security 21(5), 439–448 (2002)
Sarasamma, S.T., Qiuming, A.Z., Huff, J.: Hierarchical Kohonen Net for Anomaly Detection in Network Security. IEEE Trans. on SMC – part B 35(2) (2005)
Zanero, S.: Analyzing TCP Traffic Patterns Using Self Organizing Maps. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 83–90. Springer, Heidelberg (2005)
Zheng, J., Hu, M.: An Anomaly Intrusion Detection System Based on Vector Quantization. ICIE Trans. on Inf. & Syst. E89-D(1) (2006)
Ridella, S., Rovetta, S., Zunino, R.: Plastic Algorithm for Adaptive Vector Quantization. Neural Computing & Applications 7, 37–51 (1998)
Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)
Kramer, M.A.: Nonlinear Principal Component Analysis using Autoassociative Neural Networks. AIChE Journal 37(2) (1991)
Cisco Secure Consulting: Vulnerability Statistics Report (2000)
Corchado, E., Herrero, A., Saiz, J.M.: Detecting Compounded Anomalous SNMP Situations using Unsupervised Pattern Recognition. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 905–910. Springer, Heidelberg (2005)
Corchado, E., Herrero, A., Saiz, J.M.: Testing CAB-IDS through Mutations: on the Identification of Network Scans. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 433–441. Springer, Heidelberg (2006)
Elkan, M.: Results of the KDD 1999 Classifier Learning Contest (1999), online from: http://www-cse.ucsd.edu/users/elkan/clresults.html
Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: Analysis and Results of the 1999 DARPA Off-Line Intrusion Detection Evaluation. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 162–182. Springer, Heidelberg (2000)
Sabhnani, M., Serpen, G.: Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context. In: Proc. MLMTA 2003, pp. 623–630 (2003)
Lee, W., Xiang, D.: Information-Theoretic Measures for Anomaly Detection. In: Proc. 2001 IEEE Symp. on Security and Privacy, pp. 130–143 (2001)
Lee, W., Stolfo, S.J., Mok, K.W.: Mining in a Data-Flow Environment: Experience in Network Intrusion Detection. In: KDD 1999. Proc. 5th ACM International Conference on Knowledge Discovery and Data Mining, pp. 114–124 (1999)
Lee, W., Stolfo, S.J., Mok, K.W.: Adaptive Intrusion Detection: A Data Mining Approach. Artificial Intelligence Review 14(6), 533–567 (2000)
Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural Gas Network for Vector Quantization and its Application to Time-Series Prediction. IEEE TNN 4(4), 558–569 (1993)
Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: Principle of Neural Associative Memory. Neuroscience 2(6), 1065–1076 (1977)
Kiviluoto, K.: Topology Preservation in Self-Organizing Maps. In: IEEE International Conference on Neural Networks, vol. 1, pp. 294–299 (1996)
Kohonen, T.: Self-Organizing Maps. Springer Series In Information Sciences, vol. 30. Springer, New York (1997)
Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2(6), 559–572 (1901)
Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing. MIT Press, Cambridge, MA (1986)
Widrow, W., Lehr, M.A.: 30 Years of Adaptive Neural Networks: Perceptron, Madaline and Back Propagation. Proc. IEEE 78(9), 1415–1442 (1990)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Herrero, Á., Corchado, E., Gastaldo, P., Leoncini, D., Picasso, F., Zunino, R. (2007). Intrusion Detection at Packet Level by Unsupervised Architectures. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_72
Download citation
DOI: https://doi.org/10.1007/978-3-540-77226-2_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77225-5
Online ISBN: 978-3-540-77226-2
eBook Packages: Computer ScienceComputer Science (R0)